
22 CROSSTALK The Journal of Defense Software Engineering March 2006

Test case is a fundamental term used
by all software testers. Numerous

published sources, including the Institute
of Electrical and Electronics Engineers
(IEEE) Standard 610 (IEEE Std. 610),
define what a test case is, techniques to
design test cases, and templates to docu-
ment them. However, testers in the field
still find these definitions confusing, and
they frequently mean different things
when referring to test cases.

A common misunderstanding of test
cases can be a symptom of a larger issue
– a misunderstanding of the logic of soft-
ware testing. The main purpose of soft-
ware testing can be defined as exploring
the software product to derive and report
valid conclusions about its quality and
suitability for use. In this regard, software
testing is similar to mathematics – they
both need proofs for their conclusions.
However, mathematicians surpass soft-
ware testers in deriving and proving their
conclusions thanks to their skill in using a
powerful tool called deductive reasoning. To
construct valid arguments, logicians have
developed proof strategies and tech-
niques based on the concepts of symbol-
ic logic and proof theory [1, 2, 3].

On critical software projects, testers
have always been required to present valid
evidence supporting their conclusions
about the product’s quality. The recent
Sarbanes-Oxley Act1 makes this require-
ment much more important going for-
ward. In this article, I discuss the logic of
one of the conventional levels of testing
– system test [4] – and propose a formal
approach to constructing valid arguments
supporting testers’ conclusions. Finally,
understanding the system test logic can
help testers better understand the mean-
ing of test cases.

Proofs and Software Testing
Software testers have always dealt with
proofs on their projects. One example can
be concluding that a system passed testing.
As testers can never prove the absence of
bugs in a software product, their claim
that a system passed testing is conditional

upon the evidence and arguments sup-
porting such a claim. On critical projects,
either the project’s manager, end-users, or
a compliance department commonly
require documented test cases and test
execution logs to be used as grounds for
supporting testers’ conclusion that a soft-
ware product passed testing.

Another example is reporting a system
failure. Regardless whether it is formal
testing or unscripted exploratory testing,
testers are required to document and
report the defects they find. By reporting
a defect, a tester first claims that a certain
system feature failed testing and, second,
presents an argument in the form of a
defect description to support the claim.
Such an argument should be logically
valid to be sufficiently convincing for
developers.

Deriving conclusions and presenting
valid proofs, also known in mathematics
as logical arguments, is frequently not a
trivial matter. That is why mathematicians
use deductive reasoning as a foundation for
their strategies and techniques to derive
conclusions and present valid arguments.
Deductive reasoning is the type of rea-
soning used when deriving a conclusion
from other sentences that are accepted as
true [3]. As I discuss in this article, soft-
ware testers can also benefit from using
deductive reasoning. First, they can better
understand the logic of software testing
and, second, they can construct valid
proofs better supporting their conclu-
sions about product quality.

Applying Deductive
Reasoning to Software Testing
In mathematics, the process of deriving a
conclusion results in presenting a deduc-
tive argument or proof that is defined as
a convincing argument that starts from
the premises and logically deduces the
desired conclusion. The proof theory dis-
cusses various logical patterns for deriv-
ing conclusions, called rules of inference,
that are used as a basis for constructing
valid arguments [2, 3]. An argument is
said to be valid if the conclusion neces-

sarily follows from its premise. Hence, an
argument consists of two parts – a con-
clusion, and premises offered in its sup-
port. Premises, in turn, are composed of
an implication and evidence. Implications
are usually presented as conditional
propositions, for example, (if A, then B).
They serve as a bridge between the con-
clusion and the evidence from which the
conclusion is derived [1]. Thus, the impli-
cation is very important for constructing
a logical argument as it sets the argument’s
structure and meaning. In the following, I
will apply this concept to software testing
and identify the argument components
that can be used in testing to construct
valid proofs.

In software testing, we derive and
report conclusions about the quality of a
product under test. In particular, in sys-
tem testing a common unit of a tester’s
work is testing a software feature (also
known in Rational Unified Process as test
requirement); the objective is to derive a
conclusion about the feature’s testing sta-
tus. Hence, the feature status, commonly
captured as pass or fail, can be considered
a conclusion of the logical argument. To
derive such a conclusion, test cases are
designed and executed. By executing test
cases, information is gained, i.e., evidence
is acquired that will support the conclu-
sion. To derive a valid conclusion, also
needed are implications that in system
testing are known as a feature’s pass/fail
criteria. Finally, both the feature’s
pass/fail criteria and the test case execu-
tion results are the premises from which a
tester derives a conclusion. The lack of
understanding of how system testing
logic works can lead to various issues –
some of the most common of which I
will discuss next.

Common Issues With
Testing Logic
Issue 1: Disagreeing About the
Meaning of Test Cases
Software testers frequently disagree about
the meaning of test cases. Many testers
would define a test case as the whole set

Understanding the Logic of System Testing
Dr. Yuri Chernak

Valley Forge Consulting, Inc.

What do system testing and mathematics have in common? They both deal with proofs. This article discusses the logic of sys-
tem testing, and the steps to construct valid proofs that testers need to perform for their conclusions about the quality of a soft-
ware product.

Software Engineering Technology

Understanding the Logic of System Testing

March 2006 www.stsc.hill.af.mil 23

of information designed for testing the
same software feature and presented as a
test-case specification. Their argument is
that all test inputs and expected results are
designed for the same objective, i.e., test-
ing the same feature, and they all are used
as supporting evidence that the feature
passed testing.

For other testers, a test case consists of
each pair – input and its expected result –
in the same test-case specification. In
their view, such a test-case specification
presents a set of test cases. To support
their point, they refer to various text-
books on test design, for example [4, 5],
that teach how to design test cases for
boundary conditions, valid and invalid
domains, and so on. Commonly, these
textbooks focus their discussion on
designing test cases that can be effective
in finding bugs. Therefore, they call each
pair of test input and its expected output
a test case because, assuming a bug is in
the code, such a pair provides sufficient
information to find the bug and conclude
that the feature failed testing.

Despite these different views, both
groups actually imply the same meaning
of the term test case: information that pro-
vides grounds for deriving a conclusion
about the feature’s testing status.
However, there is an important differ-
ence: The first group calls test case the
information that supports the feature’s
pass status, while the second group calls
test case the information that supports the
feature’s fail status. Such confusion appar-
ently stems from the fact that all known
definitions of the term test case do not
relate it to a feature’s pass/fail criteria.
However, as the discussion in the sidebar
shows, these criteria are key to under-
standing the meaning of test cases.

Issue 2: Presenting an Argument
Without a Conclusion
This issue is also very common. As dis-
cussed earlier, an important part of a log-
ical argument is its conclusion. However,
a lack of understanding of this concept
can lead to presenting arguments without
conclusions. On a number of projects, I
have seen testers produce test case docu-
mentation in the form of huge tables or
Excel spreadsheets listing their test cases.
In such tables, each row shows a test case
represented by a few columns such as test
case number, test input, expected result,
and test case execution (pass/fail) status.
What is missing in this documentation is
a description of what features testers
intend to evaluate using these test cases.
As a result, it is difficult to judge the valid-
ity and verify the completeness of such

test cases as the underlying purpose for
which they were designed is not known.
Such documentation suggests that the
testers who designed it do not completely
understand the logic of software testing.

Issue 3: Presenting an Argument
Without an Implication
This issue also stems from a lack of
understanding of the structure of a logi-
cal argument, specifically that having an
implication is necessary for deriving a
valid conclusion. In software testing,
such implications are a feature’s pass/fail
criteria. The issue arises when such crite-
ria are either forgotten or not clearly
defined and understood by testers. This
can lead to a situation where testers lose
sight of what kind of conclusions they
need to report. As a result, instead of
deriving a conclusion about the feature
and then reporting its testing status, they
report the status of each executed test
case. This situation presents an issue

illustrated in the following example.
Let us assume a tester needs to test 10

software features, and he or she designed
10 test cases for each of the features
under test. Thus, the entire testing
requires executing 100 test cases. Now,
while executing test cases, the tester
found that one test case failed for each of
the features. In our example, the tester did
not define and did not think about the
feature pass/fail criteria. Instead, the
tester reported to a project manager the
testing status for each executed test case.
Thus, at the end of the testing cycle, the
results show that 90 percent of testing
was successful. When seeing such results,
a manager would be fairly satisfied and
could even make a decision about releas-
ing the system.

The project manager would see a
completely different picture if the fea-
tures’ pass/fail criteria were not forgot-
ten. In this case, the testers would report
the testing status for each feature as

What Do We Call a Test Case?

Most of the published sources defining the term test case follow the definitions given
in the Institute of Electrical and Electronics Engineers (IEEE) Standard 610 (IEEE
Std. 610):

a) Test Case: A set of test inputs, execution conditions, and expected results devel-
oped for a particular objective such as to exercise a particular program path or
to verify compliance with a specific requirement.

b) Test Case: Documentation specifying inputs, predicted results, and a set of exe-
cution conditions for a test item.

Despite the fact that this standard was published many years ago, testers in the
field still do not have a consistent understanding of the meaning of test cases. To bet-
ter understand this meaning, we can use the concept of deductive reasoning.
Following this concept, system testing can be viewed as a process of deducing valid
conclusions about the testing status of system features based on evidence acquired
by executing test cases. Hence, the main purpose of executing test cases is to gain
information about the system implementation. This information can be used together
with the feature’s pass/fail criteria to derive and support conclusions about the status
of feature testing. The feature’s pass/fail criteria are important implications in the test-
ing argument that determine the meaning of testers’ conclusions. These criteria are a
link between a tester’s conclusion about the feature status and the test cases used to
support the conclusion. Hence, the meaning of test cases follows from the definition
of the feature’s pass/fail criteria.

In system testing, the mission is finding and reporting software defects; the feature
fail criterion is commonly defined as, “If any of the feature’s test cases fails, then the
feature fails testing.” What follows from this implication is that a test case is informa-
tion that is sufficient to identify a software defect by causing a system feature to fail.
The feature’s pass criterion can further explain the meaning of test cases. It is com-
monly defined as, “The feature passes the test only if all of its test cases pass testing.”
According to this definition, we imply that the system feature passed testing only if the
whole group of its test cases passed testing. Hence, test cases are used as collective
evidence to support the feature’s pass status. It should be noted, however, that this
interpretation of the test-case meaning refers to the system test only. In contrast, in
acceptance testing a testing mission and pass/fail criteria can be defined differently
from the system testing. Correspondingly, the meaning of test cases can be different
as well.

If the IEEE definitions of test cases are examined again, we can see that these def-
initions are not specific to a particular testing mission, nor are they explicit about which
testing conclusion, i.e., pass or fail, a test case is intended to support. Instead, they
focus primarily on the test case structure: test inputs and expected results. As a result,
these definitions alone and without the feature’s pass/fail criteria lack clarity about the
test case purpose and meaning.

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering March 2006

opposed to each test case. If the feature
fail criterion were defined as, “If any of
the feature’s test cases fails, then the fea-
ture fails testing,” then the testing end-
result in our example would have been
quite the opposite and have shown that
none of the software features passed test-
ing; they all should be re-tested when the
bugs are fixed.

An Approach to Constructing
A Valid Proof
Constructing a valid proof in system test-
ing can be defined as a four-step proce-
dure. The following sections discuss each
step in detail, and explain how to con-
struct a valid argument to support a test-
ing conclusion.

Step 1: Define a Conclusion of the
Argument
In constructing a proof, always begin by
defining what needs to be proven, i.e., the
conclusion. In system testing, the ultimate
goal is to evaluate a software product.
This is achieved by decomposing the
entire functional domain into a set of
functional features where each feature to
be tested is a unit of a tester’s work that
results in one of the two possible conclu-
sions about a feature’s testing status pass
or fail. At any given time, only one of the
two conclusions is valid.

The term software feature is defined in
the IEEE Std. 610 as follows:
a) A distinguished characteristic of a

software item.
b) A software characteristic specified or

implemented by requirements docu-
mentation.
From a tester’s perspective, a software

feature means any characteristic of a soft-
ware product that the tester believes
might not work as expected and, there-
fore, should be tested. Deciding what fea-
tures should be in the scope of testing is
done at the test-planning phase and docu-
mented in a test plan document. Later, at
the test design phase, the list of features is
refined and enhanced based on a better
understanding of the product’s function-
ality and its quality risks. At this phase,
each feature and its testing logic are
described in more detail. This informa-

tion is presented either in test design
specifications and/or in test case specifi-
cations.

The test design specification com-
monly covers a set of related features;
whereas, the test case specification com-
monly addresses testing of a single fea-
ture. At this point, a tester should already
know which quality risks to focus on in
feature testing. Understanding the fea-
ture’s quality risks, i.e., how the feature
can fail, is important for designing effec-
tive test cases that a tester executes to
evaluate the feature’s implementation and
derive a conclusion about its testing sta-
tus. Performing Step 1 can help testers
avoid Issue No. 2 as discussed earlier.

Step 2: Define an Implication of
the Argument
The next important step is to define an
implication of an argument. An implica-
tion of a logical argument defines an
important relation between the conclusion
and the premises given in its support.
Correspondingly, the feature’s pass/fail cri-
teria define the relation between the results
of test-case execution and the conclusion
about the feature’s evaluation status.

According to the IEEE Std. 829, the
feature’s pass/fail criteria should be
defined in the test design specification;
this standard provides an example of
such a specification. However, it does not
provide any guidance on how to define
these criteria, apparently assuming this
being an obvious matter that testers know
how to handle. Neither do the textbooks
on software testing methodology and test
design techniques. Contrary to this view, I
feel that defining these criteria is one of
the critical steps in test design that
deserves a special consideration. As I dis-
cussed earlier and illustrated as Issue No.
3, the lack of understanding of the role
and meaning of the feature’s pass/fail cri-
teria can lead to logically invalid testing
conclusions in system testing. Also, as dis-
cussed in the sidebar, from the well-
defined implications, i.e., the features’
pass/fail criteria, testers can better under-
stand the meaning of test cases and avoid
the confusion discussed earlier as Issue
No. 1.

The rationale for defining the feature’s
pass/fail criteria stems from the system
test mission that can be defined as critical-
ly examining the software system under the full
range of use to expose defects and to report con-
ditions under which the system is not compliant
with its requirements. As such, the system
test mission is driven by the assumption
that a system is not yet stable and has
bugs; the testers’ job is to identify condi-
tions where the system fails. Hence, our
primary goal in system testing is to prove
that a feature fails the test. To do that,
testers develop ideas about how the fea-
ture can fail. Then, based on these ideas,
testers design various test cases for a fea-
ture and execute them to expose defects
in the feature implementation. If this
happens, each test case failure provides
sufficient grounds to conclude that the
feature failed testing. Based on this logic,
the feature’s fail criterion can be defined
as, “If any of the feature’s test cases fail,
then the feature fails testing.” In logic, this
is known as a sufficient condition (if A,
then B). The validity of this implication
can also be formally proved using the
truth-table technique [1]; however, this
goes beyond the scope of this article.

Defining the feature’s pass criterion is
a separate task. In system testing, testers
can never prove that a system has no
bugs, nor can they test the system forever.
However, at some point and under certain
conditions they have to make a claim that
a feature passed testing. Hence, the sup-
porting evidence, i.e., the test case execu-
tion results, can only be a necessary (C,
only if D), but not a sufficient condition of
the feature’s pass status. Based on this
logic, the feature’s pass criterion can be
defined as, “The feature passes the test
only if all of its test cases pass testing.” In
this case, the feature’s pass criterion
means two things:
a) The feature pass conclusion is condi-

tional upon the test execution results
presented in its support.

b) Another condition may exist that
could cause the feature to fail.

Step 3: Select a Technique to Derive
a Conclusion
Once we have defined all components of
a testing argument, the next step is to
select a technique that can be used to
derive a valid conclusion from the premis-
es. The word valid is very important at this
point as we are concerned with deducing
the conclusion that logically follows from
its premises. In the proof theory, such
techniques are known as rules of inference
[1, 2]. By using these rules, a valid argu-
ment can be constructed and its conclu-

Modus Ponens Form Testing Argument Form

1. If A, then B – means 1. If any test case fails, then a feature fails (implication).

2. A is true – means 2. We know that at least one test case failed (evidence).

3. Then B is true – means 3. Then the feature fails the test (conclusion).

Table 1: Deriving a Feature Fail Conclusion

Understanding the Logic of System Testing

March 2006 www.stsc.hill.af.mil 25

sion deduced through a sequence of
statements where each of them is known
to be true and valid. In system testing,
there are two types of conclusions – a fea-
ture fail status and a feature pass status.
Correspondingly, for each of these con-
clusions, a technique to construct a valid
argument is discussed. On software pro-
jects, testers should discuss and define the
logic of constructing valid proofs before
they begin their test design. For example,
they can present this logic in the Test
Approach section of a test plan document.

Deriving a Feature Fail Conclusion
I defined the feature’s fail criterion as a
conditional proposition in the form (if A,
then B), which means if any of the test
cases fail, then testers can conclude that
the feature fails as well. This also means
that each failed test case can provide suf-
ficient evidence for the conclusion. In this
case, a valid argument can be presented
based on the rule of inference, known as
Modus Ponens [1, 2]. This rule is defined as
a sequence of three statements (see Table
1). The first two statements are premises
known to be true and lead to the third
statement, which is a valid conclusion.

Deriving a Feature Pass Conclusion
The feature’s pass criterion was defined as
a conditional proposition in the form (C,
only if D), which means a feature passes the
test only if all of its test cases pass testing.
This also means that such a conclusion is
derived only when all of the feature’s test
cases have been executed. At this point,
the feature status can be either pass or fail,
but not anything else. Hence, the rule of
inference can be used, known as Disjunctive
Syllogism [1, 2], which is presented as three
consecutive statements that comprise a
valid argument (see Table 2).

Step 4: Present an Argument for a
Conclusion
At this point, there is a clear plan on how
to construct valid arguments in system
testing. The actual process of deriving a
testing conclusion begins with executing
test cases. By executing test cases, the
testers can learn the system’s behavior and
analyze the feature implementation by
comparing it to its requirements captured
by expected results of test cases. As a
result, testers can acquire evidence from
which they can derive and report a valid
testing conclusion, i.e., a feature pass or
fail testing status.

Concluding a Feature Fail Status
The feature fail criterion is defined as, “If
any of the test cases fails, then the feature

fails testing.” According to the Modus
Ponens rule, this means that each failed
test case provides grounds for the valid
conclusion that the feature has failed test-
ing. As a feature can fail on more than one
of its test cases, after finding the first
defect a tester should continue feature
testing and execute all of its test cases.
After that, the tester should report all
instances of the feature failure by submit-
ting defect reports, where each defect
report should be a valid argument that
includes the evidence supporting the fea-
ture fail status.

On the other hand, if a given test case
passed testing, the Modus Ponens rule
does not apply, and there are no grounds
for any conclusion at this point, i.e., the
feature has neither passed nor failed test-
ing. Finally, only when all of the feature’s
test cases have been executed should it be
decided whether there are grounds for the
feature pass status as discussed in the next
section.

Concluding a Feature Pass Status
Obviously, if the feature has already
failed, the pass status cannot have
grounds. However, if none of the test
cases failed, then the Disjunctive
Syllogism rule can be applied. According
to this rule, the fact that none of the test
cases failed provides grounds for a valid
conclusion: the feature passed testing. To
support this claim, evidence is provided –
test case execution results. However, this
conclusion should not be confused with
the claim that the feature implementation
has no bugs, which we know is impossible
to prove. The conclusion means only that
the feature did not fail on the executed
test cases that were presented as evidence
supporting the conclusion.u

References
1. Copi, I., and C. Cohen. Introduction

to Logic. 11th ed. Prentice-Hall, 2002.
2. Bloch, E. Proof and Fundamentals.

Boston: Birkhauser, 2000.
3. Rodgers, N. Learning to Reason. An

Introduction to Logic, Sets, and

Relations. John Willey & Sons, 2000.
4. Meyers, G. The Art of Software

Testing. John Wiley & Sons, 1979.
5. Kit, E. Software Testing In the Real

World. Addison-Wesley, 1995.

Note
1. The Sarbanes-Oxley Act <http://

news.findlaw.com/hdocs/docs/gw
bush/sarbanesoxley072302.pdf>.

Acknowledgements
I am grateful to the CrossTalk review-
ers, to the distinguished professor Sergei
Artemov at the graduate center of the
City University of New York, and to
Robin Goldsmith at GoPro Management
for their feedback and comments that
helped me improve this article.

Table 2. Deriving a Feature Fail Conclusion

M

Disjunctive Syllogism Form Testing Argument Form

1. Either P or Q is true – means 1. After all test cases have been executed, a feature

status can be either fail (P) or pass (Q) (implication).

2. P is not true – means 2. We know that the feature did not fail the test for

all of its test cases (evidence).

3. Then Q is true – means 3. Then the feature passes the test (conclusion).

Table 2: Deriving a Feature Pass Conclusion

About the Author

Yuri Chernak, Ph.D., is
the president and princi-
pal consultant of Valley
Forge Consulting, Inc.
As a consultant, Chernak
has worked for a number

of major financial firms in New York
helping senior management improve the
software testing process. Currently, his
research focuses on aspect-oriented
requirements engineering, use-case-dri-
ven testing, and test process assessment
and improvement. Chernak is a member
of the Institute of Electrical and
Electronics Engineers (IEEE) Computer
Society. He has been a speaker at several
international conferences, and has pub-
lished papers on software testing in
IEEE publications and other profes-
sional journals. Chernak has a doctorate
in computer science.

Valley Forge Consulting, Inc.
233 Cambridge Oaks ST
Park Ridge, NJ 07656
Phone: (201) 307-4802
E-mail: ychernak@yahoo.com

