Formality and Agility:
Looking for Common Grounds Within Different Realms.

Summary:

This article addresses the Managers that are involved in the software development process’ maintenance. The reader should be able to make a more conscious decision on what and how agile practices can be included in a formal software development process. It is important to increase awareness on this subject for a simplest adaptation might cause the reserve effect, raising overhead and aversion to agile practices.
This article describes a real case experiment regarding a subject that is clearly gaining momentum in the software development industry. That are very few articles on this subject, and even less with practical results.

Unstable software requirements, caused by today’s fast-paced business environment, call for flexibility in the development process. On the other hand, the increased need to outsource development, combined with concerns regarding the capacity of contractors spread around the world, leads Customers into demanding certifications according to internationally recognized standards (ISO 9001:2000, CMMI).

These contradicting needs – flexibility with formality – underlie the quandary we have been trying to solve for Critical Software. We believe that our findings can provide insights to others facing similar challenges.

THE CALL FOR FLEXIBILITY

In its first few years, Critical’s most demanding Customers came from the Space sector where requirements were fairly stable and software development followed the plans without major changes. However, as the company got more involved with the industrial sector, specific difficulties emerged, combined with new problems related to the growth of the company. These can be summarized as follows:

· Evolving requirements.

· Lack of Customer involvement

· Aggressive deadlines, high demands, low tolerance and low budgets.

· Miscommunication between developers and Customers.

This context poses serious challenges to highly formal software development processes. Their significant overhead and rigid self-contained phases clashes with the aggressive deadlines and ambiguous requirements. Project Managers either follow the process to the letter, missing deadlines and falling short on vital flexibility; or improvise, raising non-conformities and potentially compromising effective management. This originates complaints from Customers, which, in turn, compels top management to demanding new metrics for effective project monitoring and control. Figure 1 illustrates this situation, stressing the constraints posed on the Software Development Process (SDP) by the Quality Management System (QMS).

[image: image8.png]

Figure 1 - Context of application of the software development process (SDP)

Plain adoption of any Agile Methodologies, such as SCRUM, eXtreme Programming or Adaptive Software Development is not the answer, since specific in-house practices would be violated, thus inhibiting the company to play in selected markets. The solution points to an apparent paradox: bring agile and formal practices together.

RECONCILING AGILE WITH FORMAL

The defined life cycle (Figure 2) was tailored from Critical’s software development life-cycle, suitable for use in cases of unstable requirements.

[image: image2.emf]

 Oper a tions and Mai n tenance Phase

 Acce p tance Phase

 Design, Engineering and Val i dation Phase

Requir e ments Phase

Time

0%

P reliminary D esign R eview

K ick - O ff M eeting

Q ualification R e view

A cce p tance R eview

Mil e stones

Figure 2 – Agile software development process life cycle

Although clear phases still exist, the traditional waterfall was replaced by an iterative approach, and software is produced and delivered in increments. Figure 3 illustrates the process in more detail.

[image: image3]
Figure 3 – Software development process details

Instead of exhaustively defining software specifications, our approach calls on the Customer to write story cards – brief accounts of expected application behavior – to identify only high-level functionalities. Details are sought only later, as the specified functionalities are scheduled for coding. minimizing work that may latter be abandoned. Functionalities should be described by simple and unambiguous phrases using the SMART technique:

· Specific.

· Measurable.

· Attainable.

· Realizable.

· Traceable.

In cases where the Customer finds it difficult to put the ideas in writing, the “I Know It When I See It” (IKIWISI) technique can be used.
The Project Engineer reads the story cards and writes test cases in the back of each one. The Customer then confirms or corrects those tests. This interaction further contributes to a shared understanding of the goals.

Development occurs iteratively and incrementally during the Design, Engineering and Validation phase. At the beginning of each cycle, the Customer helps prioritizing the remaining functionalities, deciding which will be coded next, and defining the time-frame for having them available. This period may range from two to four weeks. Short time frames increase project success as it raises focus on objectives and allows quick steering in case of deviations.

At this point, Sprint Backlogs are created as expected by Scrum Methodology.

Software engineers translate functionalities into software requirements. Thanks to the traceability matrix, modifications impacts can be easily assessed. Although changes are allowed during the whole project, ongoing iteration should not be changed. Necessary modifications are scheduled for future cycles.

When finished, the resulting software increment is subject to final in-house tests and presented to the Customer for evaluation. If it passes, deployment is scheduled and the Project Manager fills a Reuse Sum-up document, describing which existing components were reused, and which new ones can be added to the company’s Repository. This information can be very useful in future projects, especially in effort estimating and time saving.
During the Acceptance phase, tests are conducted on the customer’s premises. Upon completion of all increments, the Customer acknowledges project conclusion by signing an acceptance form. That same day, the team holds a Project Close Down meeting for project review and lessons learned.

A tight fit with supporting tools has proven important for the process to be efficient. A CASE application is used to manage the correspondence between the higher-level functionalities and their corresponding lower level software requirements, handling attributes such as priority, risk, difficulty, effort, type etc. A history of changes is kept through comparison against the baseline. Test cases are also managed in the CASE tool. Finally, it is used for automatic document generation, such as the Software Requirements Specification. Software coding is supported by continuous building, integration, and automated test tools.
ACCOMPLISHMENTS AND STANDING CHALLENGES

The results obtained so far are very positive. The incremental delivery enables the Customer to see results sooner and provide quicker feedback. This involvement leads to an increased sense of ownership, as compared to projects using the former development process. The higher focus of programmers on smaller increments and continuous testing contributed to increased product quality. This became apparent as successive releases passed with zero bugs the Customer on-site tests. Team morale and motivation grew as a result.

Like other agile methodologies, our approach also calls for sound communication between team members, which normally means working in the same physical space. However, the enthusiastic acceptance by the staff of tools such as instant messaging and Skype in their everyday life, leads us into looking how these could complement the more traditional e-mails and project web support in creating a suitable, distributed, work environment.
FURTHER READING
1. Boehm, B. ‘Requirements that Handle IKIWISI, COTS, and Rapid Change’, Computer, IEEE, pp.99-102, 2000.

2. Cockburn, A., 'Surviving Object-Oriented Projects', The Agile Software Development Series, Addison-Wesley, 1998.

3. Highsmith, J., ‘Adaptive Software Development: An Evolutionary Approach to Managing Complex Systems’, Dorset House Publishing, 1998.

4. Hutinski, Z., Vrcek, N. and Bubas, G., ‘Communication Problems in Complex Information System Development Projects’, University of Zagreb, Croatia, 2001.

5. Larman, C., 'Agile & Iterative Development - A Manager's Guide', Agile Sofware Development Series, Addison Wesley, 2004.

6. Mannion, M. and Keepence, B., ‘SMART Requirements’, ACM SIGSOFT, SE Notes Vol 20, No. 2, 1995.

7. Standish Group, ‘Extreme Chaos’, The Standish Group Inc, West Yarmouth, MA, USA, 2001.

8. Schwaber, K., ‘Scrum Development Process’, OOPSLA’95 Workshop on Business Object Design and Implementation. Springer-Verlag, 1995.
AUTHOR BIO: José Gonçalo Silva (jsilva@criticalsoftware.com) holds a M.Sc. in Software Development. He's currently working at Critical Software, S.A. as a Project Manager and PMO. He is also responsible for the company’s quality assurance projects and services for external customers.
CO-AUTHOR BIO: Paulo Rupino da Cunha (rupino@dei.uc.pt) holds a Ph.D. in Informatics Engineering. He is currently Assistant Professor of Information Systems at the University of Coimbra, Portugal.
Customer provides story cards. Project Engineer adds test cases on the back of the card

Workshop

Story cards are prioritized according

to dependencies, risks and client constraints

Daily stand-up meetings

Variable Timebox

(2-4 weeks)

Code and test

24h

Iteration backlog

update

Check/update

Functionality vs component matrix

Story cards’ functionalities are translated into software functionalities and lower level components

Increment is tested in customers’ facilities using test cases from story cards

Get next set of story cards

Requirements Phase

Design, Engineering and Validation Phase

Acceptance Phase

create

[image: image1.emf]ISO 9001:

2000

TickIT

ECSS

ISO 12207

ISO 15504

NASA-SEL

AQAP 2110

AQAP 150

QMS

PLCM

SDP

Quality

Quality

Department

Department

Management

Customer

Project

Complaints

Demands:

- Agility

- Metrics

Engineering Departments

ISO 9001:

2000

TickIT

ECSS

ISO 12207

ISO 15504

NASA-SEL

AQAP 2110

AQAP 150

QMS

PLCM

SDP

Quality

Quality

Department

Department

Management

Customer

Project

Complaints

Demands:

- Agility

- Metrics

Engineering Departments

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

