
Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 1

Software Management 2001
San Diego, CA, USA � February 12-16, 2001

Managing Concurrent Software Releases in Management and Test

David A. Shinberg
Government Communications Laboratory
Lucent Technologies – Bell Laboratories

Whippany, NJ 07981

ABSTRACT

Customers are requiring frequent and feature rich
releases of software products to support Lucent
Hardware. The fundamental problem is the time
required to develop and test features often
exceeds the release interval. One option to meet
the needs of our customers is to use concurrent
development and testing; however, the use of
concurrent development has several potential
pitfalls. The primary problems associated with
concurrent development are: 1) How to isolate the
long lead features from the features that fit within
a development cycle, 2) How to manage the
propagation of bug fixes between releases that are
in the field and releases that are still being
developed, 3) Developers must be trained to
work in the concurrent paradigm. This paper
describes a unique approach, using existing
Configuration Management tools, to managing the
development load lines in support of concurrent
Fixed Interval Feature Delivery (FIFD). Software
load line management is the infrastructure and
processes necessary to manage the content of the
loads. This entails managing where and when
changes are made and managing who makes
changes to the source code. The goals of load
line management are to: 1) provide a managed
arena for software development activities, 2) limit
the effort required to remove features from
deliverables and 3) minimize the effort required to
port changes to the software to other load lines.

1. Introduction
There is an ever-growing need to provide
complex software products to customers on a
short development schedule. Additionally, the
customers need to be able to count on release
dates for planning purposes. Instead of investing
in an entirely new tool set that solves the
configuration management issues associated with
supporting concurrent development and support,
existing tools can be used. This paper focuses on
how to adapt and in some cases enhance an
existing set of well-known tools to enable Lucent
to excel in the market place. To this end, this
project chose to implement the Fixed Interval
Feature Delivery (FIFD) model of software
development.1

To help the reader understand why the particular
solution was chosen, this paper will begin with a
short summary of the original environment. A
short description of the desired attributes of the
enhanced solution is provided in Section 3,
Motivation. Luckily, some improvements were
already in place before the implementation of
FIFD was started. The enabling technologies are
described in Section 4, Enabling Technologies.
The remainder of the paper provides details on
the enhanced load line management solution
including discussing some potential pitfalls.

2. Original Environment
The software development environment uses
Sablime2 for change management and version
control and nmake3 for performing product
builds. Sablime is a Lucent Product for
performing configuration management of
software components and ancillary products such
as documentation. There were separate Sablime
Generics for each product release, and these
generics were created on an as needed basis.4

This meant that a generic for the next release was

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 2

often created months before the prior release was
completed or even entered the system test phase.

The way in which the multiple full generics were
managed resulted in the need to map both new
features as well as bug fixes to subsequent
generics. The mapping of these changes incurs
additional costs and more than likely introduces
more defects.

3. Motivation
As part of the Lucent wide Project Lightning
Initiative5, this project decided to adopt a Fixed
Interval Feature Delivery model for software
development. The goal of the FIFD implemen-
tation was to have major releases every six
months and a minor release three months later.
The most important attribute of FIFD is that if a
feature does not meet the quality standard for a
release, that feature must be dropped from the
release. In other words, the release date is held
constant while the feature content of the release is
subject to change. This is contrary to how many
commercial software packages are managed.

There was a very limited time to implement the
processes and procedures needed to support
these frequent releases. Therefore, a decision was
made to adapt the existing processes rather than
to try to create entirely new processes.

4. Enabling Technologies
The improvements made to the software build
environment and the implementation of shadow
generics became the enabling technologies used
to build the new load line management model.
This work was part of a continuous effort to
improve software development and configuration
management. The application of these
technologies is described in section 5, Enhanced
Solution.

4.1. Software Builds

Improvements to the build environment were part
of the work plan for the software development
environment group.6,7 The build environment is
based entirely on nmake. The specific improve-
ments included:
• Parallel builds resulting in dramatically

decreased build times.
• Ability to perform viewpathed builds.
• Restructuring of the source tree to corre-

spond to the hardware platform.

• Proper identification of all generated objects
and their respective source files.

• Elimination of uncontrolled external shell
scripts used to initiate, control and perform
integral parts of the builds.

The ability to perform viewpathed builds, as well
as the decreased build times, enabled the
proliferation of generics that are a basis of the
load line management strategy.

4.2. Shadow Generics

Shadow Generics are Sablime Generics that
contain only the files required to implement a new
feature or, in some, cases a bug fix.8 This type of
generic can effectively be used to isolate the long
lead feature development from the current release.
Additionally, due to the relatively sparse nature of
a shadow generic, one can easy identify the file
belonging to this new feature. Developers map the
changes into the mainline generic on a file by file
basis limiting the cost and duration of this
integration effort. Although shadow generics were
designed for infrastructure changes, such as
adding a new processor board, they are also
suitable for normal feature work. There is an
upper limit to the number of shadow generics that
can be managed per release. Empirical evidence
indicates that there should be no more than two
shadow generics per release.

As a practical example, we delayed the creation
of a normal generic (call it G5) by four weeks. In
that time, there were 600 changes to the
predecessor generic (G4), while the shadow
generic (G5x) contained only 120 files. Once G5
was created from G4, only two weeks were
required to merge the changes from G5x into G5.
If we did not delay the creation of G5, the 600
changes would have been ported to G5 from G4.

Finally, shadow generics are easily closed after
the changes are incorporated in the main line
generic. This reduces the long-term administration
and maintenance effort for the change
management system. As a side note, the use of
shadow generics also reduces disk space
requirements as well as maintains the performance
of the change management system.

5. Enhanced Solution
The enhanced solution is a load line management
strategy that allows parallel development streams
to be managed in tandem. Load line management

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 3

is the tools and procedures used to create
software releases. The load line management plan
should be part of a larger configuration
management plan. In this paper, several
requirements are placed on the configuration
management and other management processes.
The actual implementation of those processes,
however, is beyond the scope of this document.

As an integral part of configuration management,
load line management provides a method to
control access to source code, across releases.
That is, the ability to manage where and when
changes are made and by whom. The model used
for load line management consists of generics that
contain source files and a set of transitions that
can be applied to the generics.

5.1. Types of Generics

A generic is a Sablime repository that contains
source files. There are four types of generics
used in this load line management strategy.

A Feature Shadow Generic contains a subset of
the source code needed to generate the product
and provides a controlled area for development
before the Development Generic is available.
Feature Shadow Generics are used for
developing features for a given release before the
Development Generic is available.

An Infrastructure Shadow Generic is very similar
to a Feature Shadow Generic; however, it is
used for infrastructure changes such as adding a
new processor board or migrating to a new
compiler. Infrastructure Shadow Generics tend
to exist for a longer time than Feature Shadow
Generics. This should not be surprising because
infrastructure work is more complicated and
therefore, takes more time and is associated with
more risk than normal feature development.

A Development Generic is a fully populated
generic used for feature development and some
testing for a given major and minor release in that
order. That is, development is complete for the
major release before work is started in the
Development Generic for the features in the
minor release. Development Generics are never
used for builds targeted Beta Test or General
Availability.

A Release Generic is a fully populated generic
used for the completion of testing including FOA,

GA and subsequent field support. New
development is not allowed in a Release Generic;
however bug fixes are allowed and expected if the
problem exceeds a threshold. A spelling error in a
message, for example, is not likely to be changed.

5.2. Milestones

There are two categories of milestones:
• Generic Milestones that apply to a generic,

such as creation, development complete,
system test complete and closure.

• Feature Milestones that apply to the features
themselves, such as commitment,
development complete and system test
complete.

A generic is composed of multiple features and
unfortunately a few bug fixes. Therefore, it
should not be surprising to find some overlap
between the feature milestones and the generic
milestones. Features themselves are composed of
one or more Modification Requests (MRs).9

The milestones are states in the lifecycle of a
feature or generic. Transition rules are used to
move a feature or generic along its lifecycle. A
primary objective of the transition rules is to
ensure that the release date is not compromised.
This is accomplished by first defining the
milestones for a generic and then ensuring that the
feature milestones support the generic transition
dates.

Milestones that apply to a feature are:
Commitment: the feature is committed to a given

release.
Design Complete: the design has been completed

and reviewed.
Feature Test Complete: the developer(s) have

completed testing the feature.
System Test Complete: the feature has passed

system testing.

The milestones that apply to a generic are:
Created: the generic is created and available for

use.
Deliverable Test Complete: all of the code for the

various features has been built and passed
basic functionality testing

Feature Test Complete: all features targeted for
the release have passed feature testing

System Test Complete: all features targeted for
the release have passed system testing.

General Availability: the release supported by this
generic is generally available to customers.

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 4

Closed: the generic is closed.

The transition rules that apply to the creation of a
Shadow Generic are different from those that
apply to the creation of a Release Generic.
Instead of listing the myriad of transition rules for
this particular implementation, the usage of the
transition rules are discussed in the following
section.

5.3. Release Scenario

A scenario is sometimes helpful in visualizing
complex systems. This scenario describes
configuration management activities that are
required to produce a hypothetical major release
called 16.0 and the corresponding minor release
called 16.1. The release number is not important
and is used strictly to avoid the need to have
release N and N+1.

Key

r16.0x

P
ort

r16 Development Generic

STOP

r16.1x P
or

t

STOP

C
u

t

C
u

t

r16.0
STOP

STOP

r16.1

C
ut

r17

r17.0x

P
o

r t

STOP

M
a

p
 B

u
g

 F
ixe

s

M
a

p
 B

u
g

F
ixes

r16.0
Deliverable Test

Complete

r16.1 GA
r16.1

Deliverable Test
Complete

r15.1
Deliverable Test

Complete

Development
Generic

Shadow
Generic

Release
Generic

1

2

3
4

5

6

7

8

10

11

12
13

14

15

16

17

18

19

9

Figure 1: Release Scenario for Releases 16.0 and 16.1

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 5

Step Applicable
Generic(s)

Description

1 r15.1 à r16.0x The r16.0x generic is created based on a good build of r15.1. Note that because r16.0x is a
Shadow Generic, files are added only when a developer needs to change that file.

2 r15.1 à r16 The fully populated r16 Development Generic is created from a good build of r15.1.
3 r16.0x à r16 Developers port the changes made in r16.0x to r16 before other work is started in r16.
4 r16.0x The r16.0x generic is closed
5 r16 Developers perform development and testing of the features targeted for Release 16.0.
6 r16.1x The r16.1x Shadow Generic is created and developers may begin working on Release 16.1

targeted features.
7 r16 à r16.0 The r16.0 Release Generic is created and populated from the most recent build in r16 that

passed deliverable testing. The creation of r16.0 allows features that do not meet the quality
standards to be dropped from Release 16.0. However, those features in the r16 generic, but
not in the build used to create r16.0, will likely end up in Release 16.1. This is facilitated by
continuing development in the r16 generic for Release 16.1.

8 r16.1x à r16 Developers port the changes made in r16.1x to r16 before other Release 16.1 related work is
started in r16.

9 r16.1x The r16.1x generic is closed.
10 r16.0 System Testing and related bug fixes are performed for Release 16.0
11 r16 Developers perform development and testing of the features targeted for Release 16.1.
12 r16.0 à r16 Developers map bug fixes from r16.0 to r16.
13 r16.0 General Availability of Release 16.0. This includes all features that passed quality assurance

and met the schedule for Release 16.0. Likely, some features were originally targeted for
Release 16.0 that did not make release 16.0. These features either will be in subsequent
release or dropped depending on the needs of our customers.

14 r16 à r16.1 The r16.1 Release Generic is created and populated from the most recent build in r16 that
passed deliverable testing. The creation of r16.1 allows features that do not meet the quality
standards to be dropped from Release 16.1. However, those features in the r16 generic, but
not in the build used to create r16.1, will likely end up in Release 17.0.

15 r16 à r17 The r17 Development Generic is created from a stable build of the r16 Development
Generic. There may be some features that are in this build that are now targeted for Release
17.0; but have not completed deliverable testing.

16 r16 The r16 generic is closed. Recall that the r16 generic is never used for releases that reach a
customer. There may be some features that are killed at this point (i.e., removed from the
source code tree).

17 r16.0 à r16.1 Any bug fixes applied in r16.0 need to mapped to r16.1 prior to GA of Release 16.1. In
addition, r16.1 is used for any field support releases to fix urgent problems that can not wait
until GA Release 16.1.

18 r16.1 General Availability of Release 16.1. This includes all features that passed quality assurance
and met the schedule for Release 16.1. Additionally, problems found in Release 16.0 that
were unfortunately detected by customers should be fixed in Release 16.1. Likely, some
features were originally targeted for Release 16.1 that did not make release 16.1. These
features either will be in a subsequent release or dropped depending on the needs of our
customers.

19 r16.0 After the GA of Release 16.1, any new problems found in Release 16.0 will be fixed in
Release 16.1. There may be one more bug fix release based on r16.0 for bugs that were
already reported and currently being worked. After that, the r16.0 Release Generic is closed
to limit the number of supported releases.

Table 1: Transition steps for Releases 16.0 and 16.1

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 6

A graphic depiction of the generics associated
with Release 16 is shown in Figure 1: Release
Scenario. The boxed numbers correspond to the
steps described in Table 1: Transition steps for
Releases 16.0 and 16.1. The steps provide a
sequence of events that occur throughout
Releases 16.0 and 16.1. Specific terminology was
used to distinguish between a generic (e.g., r16.0)
and a release (e.g., Release 16.1).

6. Benefits of Enhanced Solution
Recall that the goals of load line management in a
FIFD environment are:
• Provide a managed arena for software

development activities.
• Limit the effort required to remove features

from deliverables.10

• Minimize the need to port or map features
between generics.

• Prevent rapid growth of releases that are
supported in the field.

The solution described in previous sections of
this paper accomplishes the goals listed above.
More significantly, this solution was based on
existing tools, which greatly reduced the
implementation time and the total cost of the
solution. The problematic costs are not the ones
associated with purchasing new tools and
associated hardware. Rather they are the costs of
training staff to use the new tools. The direct
training costs can be measured, while, the more
significant cost of lost productivity is not well
understood or measured.

The rest of this section is devoted to demon-
strating how the solution achieves the goals.

6.1. Managed Arena for Development

The Shadow Generics, which can be created as
soon as a feature is committed to a release,
provided an early managed arena for develop-
ment. All other development occurs in a fully
populated generic.

6.2. Ease of Removal

The method in which the fully populated generics
are created allows specific changes associated
with a feature to be omitted from the creation of
the subsequent generic. Additionally in the case
of a shadow generic, the work done in the
shadow generic does not need to be ported to the

development generic. This proves to be an
excellent approach to mitigating the uncertainty
associated with infrastructure changes.

6.3. Minimal Rework

The development work is complete and tested
before a subsequent generic is created. There-
fore, developers do not need to implement the
features in more than one generic. The only
changes that are mapped between generics on a
regular basis are bug fixes. Another technique
used to limit rework is the closing of generics as
soon as they are no longer needed.

6.4. Limit Field Support

Field support is limited by discontinuing support
on the major release (e.g., Release 16.0) once the
minor release (e.g., Release 16.1) is generally
available. Certainly, bug reports will still be
accepted on the major release; however any fixes
will be made in the Release Generic
corresponding to the minor release (e.g., r16.1).

7. Caveats and Constraints
The solution focuses on a change management
system to allow concurrent development by
multiple teams of developers. This solution can
not work without a disciplined approach to
managing the software development process. One
critical success factor is the management of
changes made to the source code. Strict entry
requirements are necessary to prevent unau-
thorized changes being made to the source code.

There are three distinct functional entities that
must work together to ensure the stability of the
code base. The entities are project management,
development and configuration management.
Project management is responsible for commit-
ting a feature to a given release. Development is
responsible for following the defined process for
performing software development including
applicable documentation and reviews. Finally,
configuration management is responsible for
ensuring that the defined development processes
are followed. For this model to be successful, the
configuration management organization needs to
be empowered to prevent unauthorized changes.

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 7

The different roles for feature development of the
three entities are shown in Figure 2, Roles of
Organization Entities. There should be no work
on a feature until it is committed by project
management in the top left-hand box. After that,
developers need to have a MR that can only be
used the in appropriate generic(s) to control the
documentation and code. The development
process requires that a design review be
performed before changes are made to the source
code. Therefore, configuration management
prevents changes to the source code until the
design review has been completed successfully.

After developers change the code and place it
under source code control, the code and a plan
for testing the changes must be reviewed. If these
reviews are successful, then the change can be
submitted to be built. After the code is built in a
load, then deliverable testing is performed. Once
deliverable testing is complete for a feature, which
is likely composed of multiple MRs, project
management is notified.

This process can deteriorate when no one is
responsible for managing the release from a MR
instead of feature basis. Project management is
concerned about the features; however, Devel-
opment must be concerned with the MRs.

8. Conclusion
The approach described for managing concurrent
development has several advantages. The first is
that it was based totally on existing tools and
procedures. Therefore, this approach minimizes
the impact on staff associated with adjusting to
new tools and procedures. Integration of multiple
features targeted for the same release is
performed early in the development cycle. This
prevents problems later in the development cycle
with conflicting changes. This approach
preserves the integrity of a release, by applying
strict entry criteria. Features can be dropped up
to the creation of a Release Generic, which is
after deliverable test of a release.

The timely implementation of the fixed interval
feature delivery development model for
development would not have been possible
without the techniques described in this paper

9. Acknowledgements
The author acknowledges the help and guidance
of several colleagues and managers, without
whom this work would never have been
completed.

Tom Reddington, my current supervisor,
provided the encouragement and the push needed
to actually write this paper. Hank Schottland
provided the guidance needed to promote the
techniques described to the development
community. Tom Morton developed the concept
of Shadow Generics that are a key enabling
technology. Tom also spent countless hours
discussing the current solution as well as
configuration management in general.

Project
Management Development

Configuration
Management

Commitment

Design

Valid Design ?

No

Change
Source
Code

Code & Test
 Plan Inspection

Passed QA ?

submit

No

Yes

Deliverable Test

Sanity Test

Deliverable Test
Complete

Accept / Assign
MRs

Permit source
changesYes

Permit Submit

Yes

Figure 2: Roles of Organization Entities

Software Management 2001 February 12-16, 2001
Managing Concurrent Software Releases in Development and Test Page 8

1 Fixed Interval Feature Delivery was based on
Timebox Development as described in S.
McConnell, 1996. Rapid Development.
Microsoft Press, Redmond, WA pp. 575-583.
2 More information and documentation on The
SABLIME® Configuration Management System
can be found at:
http://www.bell-labs.com/project/sablime/.
3 More information and documentation on nmake
product builder can be found at: http://www.bell-
labs.com/project/nmake/
4 A generic in Sablime is a version of the product
that has been or may be released and must be
maintained. It contains the source code and
associated change history for the given version of
the product.
5 The Project Lightening Initiative is a Lucent
wide project to reduce intervals in research and
development activities.
6 Morton, T. V., Shinberg, D. A., Makefile
Improvements to Support Enhanced Builds.
Lucent Technologies Technical Memorandum
(September 12, 1997).
7 Shinberg, D. A., Ongoing nmake work
priorities. Lucent Technologies Technical
Memorandum (July 15, 1999).
8 Morton, T. V., Shadow Generics. Lucent
Technologies Internal Training Presentation (May
3, 1999)
9More specifically, a Modification Request is the
description of an enhancement or of a problem in
the existing product. In the Sablime system, an
MR is required to request or make changes to the
controlled product.
10 Removal is required when something goes
inexplicably wrong. The load line management
process can help enforce entry criteria to limit the
number of feature that need to be removed;
however, other parts of the organization are better
suited for this task.

David Shinberg
David Shinberg is currently working on Internet research in Bell Labs examining
internet mapping techniques and computer security.

He graduated with a BS in Chemistry and Computer Science from Union College
in 1988 where he was awarded an MS in Computer Science in 1989. As a
graduate assistant, David founded the Computer Science Crisis Center. While
working at Lucent, he also received an MBA from the Stern School of Business in
1992. After joining Lucent, David was the lead UNIX System Engineer on
mainframe computers for what became Unix System Laboratories. His
responsibilities included defining the computer architecture used by all software
developers and managing the UNIX configuration management system.

David’s next assignment was the lead engineer on a real-time system that
completed a successful sea trial on a submarine. He was also responsible for all
aspects of software configuration management for this project. David spent two
years in Lucent’s wireless business working on software construction processes
including implementing a new set of nmake based makefiles. His main interest is
the efficient use of software development process from a technical and
managerial perspective to gain a competitive advantage for an organization.

	Title Page
	Paper
	Bio

