

When Test Drives the Development Cycle Bus

 Having finished our last project, which ended as a fire drill as usual, the managers
of development and test concluded that we didn’t ever want to go through that again. All
agreed the test team had been riding the development cycle bus long enough.
 Our new paradigm has test driving the development cycle bus instead of
engineering. The process of change is very difficult in any company, the changes that we
have undergone have totally reengineered our Research and Development department. It
took courage for the test team to go from passively waiting for whatever bug the
engineers decided to fix (or what piece of code they decided to complete) to the active
role as facilitator of the entire process. The engineering team has been helped by having
test push for dates and specific bug fixes in weekly meetings. In these weekly meetings
each person knows that if they do not do their part as promised other people will not be
able to deliver either. The process on the whole has brought the entire development team
together working toward one common goal "To Release Quality Software".

The test teams first task was to organize and sell the idea to product and project
management and a skeptical engineering team. We all looked back at our past release
record and knew that we wanted change for the better. All knew this new process would
involve a lot of effort to get started but, it was better than doing things the way we always
had in the past.

Everyone including engineering, management, and especially test are now fully
on board and wouldn't want it any other way. Our innovative formula for success is
broken down into the following sections:

• Establish Daily Events/Goals to Meet Weekly Build Objectives
• Make Bug Triage a Weekly Process
• Grade the Software With a Two-Tiered Approach

o Grade the Weekly Cycle Build
o Grade Each Module of the Software Weekly

• Let Everyone On the Team Know the Status of the Entire Project
• Manage The Project With Flexibility

Establish Daily Events/Goals to Meet Weekly Build Objectives.

During the early phase of the software development cycle, engineering builds the
software every week. Closer to the Beta release, the software can and is often built
semiweekly or even more frequently. Each weekly build is treated as a release candidate
in the sense that the state of the software is always known. If the software has to ship, it is
known which areas have been tested and which modules are or are not ready to ship.
Both engineering and test are assigned daily deliverables for which they are accountable
to deliver to each other. Commitment of delivery by each team as well as each individual
allows the build to occur successfully, and improves the state of the software weekly.

All members on the project from test, engineering, project management and
documentation attend a daily morning briefing. The Test or Engineering Manager direct
the meeting, relaying pertinent information such as the condition of the build and most
importantly specifically asking engineering bug fixes promised will make the build
deadline. We then go around the room and each person tells what they will be doing for

the day. This allows everyone to know what everyone else is doing. Telling the group
individual objectives is a type of reinforcement because the commitment seems to be
more effective for follow through and delivery. The additional byproducts of the
meetings are that it often uncovers important pieces of information and many times
matches people up to solve problems together. The meeting is generally held in a small
room with only a few chairs so that the attendees will not prolong the meeting but, get to
the point.

 Each individual owns weekly build objectives always conscious that others are
relying on follow through and delivery. Starting this cycle you are essentially practicing
making the Gold CD weekly.

Make Bug Triage a Weekly Process

The bug triage process is a weekly meeting where the lead engineer and lead
tester agree on the bugs that will be fixed in the upcoming week’s build cycle. This is the
chance for the lead tester and lead engineer to reach a consensus and address the most
severe bugs. In most cases, addressing the most severe bugs enables testing to continue.
This also increases test’s ability to improve the depth of its reporting on the state of the
software each week. Triage also provides a time for discussion and risk analysis between
the test and engineering teams.

The test lead will generally start the meeting with comments or questions about
the weekly build, the testing effort or technical questions that the engineer is best suited
to answer. Test produces a "Hot List", which are the top bugs as designated by the test
team. This list is set up in a spreadsheet and includes the following information:

 The title of the bug in the bug repository
 A bug repository tracking number
 The module that the bug resides
 The status of the bug (bug verified, fixed etc.)
 What build the bug was promised to be fixed
 Who owns the bug (engineering or test)

Engineering and test then decide which bugs will be worked on during the week.

In addition it is confirmed if the past weeks commitments have been met. A very
important item to note is that engineering should not be using their precious time fixing
bugs not on the list without the approval of test. If test can anticipate what will be in the
build they are ahead of the planning game. Additionally if an engineer has extra time they
should fix bugs that are in the best interest of the test team.

The expected outcome of the meeting is test and engineering have addressed the
highest priority bugs and decided which ones will be in the next build. This is executed
by assigning a specific engineer the responsibility to fix the bug. If an engineer sees their
name beside a bug it places necessary pressure to fix it in the allotted time. It is
imperative that the list be maintained since many decisions are based on this list. Once
the meeting has adjourned test will update the bug repository and begin to build their test
suite. The test lead maintains the list, which is always kept on a shared drive so that
everyone has access to the information anytime.

 The idea here is to weekly prioritize the bugs into a "Hot List" and have weekly
fix commitments that everyone agrees to.

Grade the Software With a Two-Tiered Approach.

Grading the software is a two-tiered approach. Grades consist of weekly build
cycle grades and module grades. The grades are calculated by using the bug repository
counts and a scale everyone is familiar with: A to F, just like school. Grades are
distributed to each team member and posted where all can see.

Grade the Weekly Cycle Build.

The test team grades the weekly cycle build. Most bugs are found during the
sanity testing of the weekly build. If an engineer introduces showstoppers in the build,
which prevent testing, the build receives a letter grade of F. If an engineer breaks the
weekly build, it receives the same grade and the engineer who breaks the build has to buy
the entire team bagels.

The weekly cycle build report is a way to look at software as a whole and how it
has changed over the past week. This report is set up as a spreadsheet and compiled by
the test lead through the bug repository and has the following information:

Cycle Build Number
Release Date
Overall Grade
Bugs submitted during the past week broken down by severity
Current open bug counts broken down by severity
Total bugs on the project opened and closed
Number of bugs closed during the past week
The test lead is again responsible for maintaining the build grades which are also

kept on a shared drive. This ensures everyone has access to the information anytime.
 The key point is everyone knows the overall state of the software at any given
time.

Grade Each Module of the Software Weekly.

The software is also segmented into modules. Test also grades each module of the
software weekly. Some module’s grades will remain static while test recommends
engineering to focus on more severe modules. The ultimate goal is to have all modules at
a letter grade agreed upon in the test plan. The module grades are calculated using the
same counts and scale as the weekly builds.
 The module grades are a way to look at software by module and to lend additional
insight in to the weekly build grade. Everyone focuses on how individual modules have
fluctuated over the past week. An important item to note is that it is imperative to have
modules set up in the bug repository correctly, meaning too few or too many modules
will skew the module reporting. The size of the module and quantity of bugs are
considered when evaluating the modules and assigning grades.

 This report is created in a spreadsheet and compiled by the test lead utilizing the
bug repository database with the following information:
 The Module Name
 The Number of bugs by module broken down by severity

 The Number of total bugs by module
 A weighted average
 Total Score
 Grade
 Comments
The weighted average - We have four levels of severity for bugs and assign scores in the
following way:
 Showstopper = 5
 High = 4
 Medium = 3
 Low = 2
We multiply the number of bugs in each module by their respective weight and then add
each to get the Weighted Total. This can be easily set up as a formula in the spread sheet.
The Total Software Score is calculated by an average of each module.

The Grade is calculated using the following :
 E 0 - 30 Fail (Bug count contains showstopper bugs, unstable

 condition)
 D 31 - 50 Below Average (Bug count for module contains excessive severity

 High bug count, needs work)
 C 51 - 70 Average (Bug count for module contains moderate severity high,

 needs improvement)
 B 71 - 90 Good (Bug count for module is low and severity is medium, may

 be released)
 A 91 - 100 Excellent (Bug count for module is low and severity low, "Zero

 Defect")

 The test lead is also responsible for maintaining the module grades, which are also
kept on a shared drive so that everyone has access to the information anytime.
 The key point is everyone knows the state of each module at any given time.

Let Everyone On the Team Know the Status of the Entire Project.

This type of grading system goes beyond the use of metrics, everyone on the team
knows the state of the overall software as well as the individual modules. All on the
project are striving for an A and each team member can see the progress and the
readiness of the software.

This reinforces we are all working toward the same goal and allows each person
to have the same data on the project. Perceptions may be different but, the grades should
align most perception differences. Slips and broken builds can never be totally eliminated
but, if we all agree where we are, it becomes much easier to determine success and reach
the next milestone and the ultimate goal of releasing quality software.

Manage the Project With Flexibility

Finally, once the process is in place, it is easy to accelerate or decelerate the
cycles as needed. At the start of many projects we will not start the module grades until
we have built the software a few weeks, this is due to unit testing has not been completed

and the grades would not reflect the true state of the software. As we get closer to the
Beta release we may build three or four times a week depending on the necessary
iterations and if any last minute fixes are required.

 This formula needs to be adapted for each organization and even each project. In
the planning stages each project weekly cycles, release grades and even module names
must be evaluated and agreed upon by everyone on the project. We can't give you exact
module or cycle grade sheets because even in our organization some Test Leads have
adjusted the sheets to more efficiently fit their project.

The Test Manager can not just copy grade sheets and sit back. Each project will
be different and require collecting different information. The Test Manager should
continually tweak the process and adjust it as needed. It's hard work but, effort well
worthwhile when you see the outcome of using this process.
 We are not saying that the test should take over in a coup, that would only
exacerbate the rocky relationship between engineering and test. As with any change it
takes time and buy in. However, there are tremendous benefits and someone has to drive
the bus so why not test. Some of the benefits to the test team are having modules fixed in
an order that allows the test schedule to be adhered to, this allows testing to be performed
more efficiently. Finally, test is always pressed for time toward the end of a project, if
they start controlling the software’s destiny from the beginning the end is not so painful.

 The hardest part is starting, which includes getting organized, developing
the grading criteria, the tools to perform the bug tracking, and of course, selling the idea
to management and engineers. In the end, we all win. We are ready for show time and
can produce a gold CD with a few finishing touches—just like we’ve done numerous
times before in our weekly dress rehearsals.

Cindy Necaise

Cindy Necaise has over 15 years experience with Point-of- Sale software in the
hospitality and retail industries. Cindy joined Micros in 1996. Her current role is Test &
QA Manager for two POS applications for the Leisure and Entertainment division. Micros
L & E products can be found in most major airports, hotels, stadiums, and theme parks
around the world. Most recently, Cindy successfully led the testing of a porting project of
a POS application from UNIX to Windows NT. She holds a BA in Business Management
from the College of Notre Dame of Maryland.

	Paper
	Bio

