
Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 1

A Comparison of IBM’s Orthogonal Defect Classification to
Hewlett Packard’s Defect Origins, Types, and Modes

1.0 Abstract
The basis of this paper is actual work experience. In the last three years, the author has
worked with seven Software Development teams to help them categorize defects using
Hewlett Packard’s Defect Origins, Types, and Modes. More recently, the author has
assisted a software testing and development organization analyze the results of defects
categorized using IBM’s Orthogonal Defect Classification (ODC).

2.0 Introduction
A greater amount of measurable information is available about how software is created
and tested in the software defect than in almost any other place. As a result, large
corporations such as Hewlett Packard and IBM have developed defect categorization
models. However, few direct comparisons of these different models have taken place.
This paper compares a subset of actual defects categorized using IBM’s Orthogonal
Defect Classification model and Hewlett Packard’s Defect Origins, Types, and Modes
and explores the data gathered from each model. It then compares the models in terms
of process, resource, and data. Finally, recommendations will be made regarding what
conditions are best suited for each model.

3.0 Purpose and Parameters of the Project
The code base that the defects were logged against represented over half a million lines
of code and is the firmware source code for one of the LaserJet’s most popular product
lines. The LaserJet product that contains the code is currently available in the
marketplace.

A Software Testing group sponsored the defect analysis project. The primary objectives
were to:
- Learn from existing defects to improve defect-finding methods.
- Determine what conditions had to exist to find the defects.
- Understand what defect finding methods should be applied to code areas.
- Find defects more effectively and quickly.

The project was a “one-shot approach”. This means that one 3-hour workshop was all
the effort that was required by the engineers who participated. In those three hours, 22
Software Test and Development Engineers categorized 93 high priority defects using
IBM’s Orthogonal Defect Classification (ODC) model. The decision to use ODC, as
opposed to Hewlett Packard’s model, was made by the Software Testing manager. It
was felt that more information applicable to Software Testing improvement would be
generated using ODC as compared to Hewlett Packard’s model. Due to engineer time
constraints, categorization of the same defects using the Hewlett Packard model was
done after the workshop.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 2

4.0 IBM’s Orthogonal Defect Classification (ODC)
IBM developed the ODC model. It contains several different levels and sub-levels1. At
the time of the workshop, a year ago, the ODC levels were:

• ACTIVITY - The testing activity being performed when the defect was found.
• TRIGGER - The environment or condition, within the testing activity, that had to exist

for the defect to surface.
• IMPACT - The effect the defect would have had upon the customer if it had not been

found.
• DEFECT TARGET - Represents the identity of the work product where the fix was

implemented.
• DEFECT TYPE - For the particular defect target(s), what was the specific problem?
• DEFECT QUALIFIER - Indication of whether the defect type was an omission, a

commission, or extraneous.
• DEFECT SOURCE - In terms of developmental history, what best defines the fix that

was made to Requirements/Design/Code?
• DEFECT AGE - In terms of the age/origin of the code, where was the defect found

and fixed?

Today, the definitions of ODC Defect Type and Source have changed:

• DEFECT TYPE – Represents the nature of the actual correction that was made.
• DEFECT SOURCE – Identifies the origin of the design/code, which had the defect.

Based on the ODC definitions that existed a year ago, we decided to focus primarily on
Defect Activity, Trigger, Target, and Type. Had the new definition of Source been in
place at the time, use of this level might have been considered.

4.1 Applying ODC
Although a base set of “Activities” is defined in the model, each organization has
the flexibility, and is encouraged, to define its own testing “Activities”. We
defined the following “Activities” for the purpose of the workshop:

• Product Test - Testing the “box” (HW, FW, SW).
• System Test - Testing the customer solution (HW, FW, SW, Packaging,

Networking, etc.).
• Component Group Test - Testing groups of firmware components.
• Component Test - Testing a single firmware component.
• Unit Test - Testing an element of a firmware component.
• Inspections/Reviews – Formal and Informal Specification, Design, and

Code reviews.

The next step in applying this part of the ODC model is to align “Triggers” under
each “Activity”. To do this, the organization using ODC must take an unchanging
set of ODC triggers and align them to their set of organization specific “Activities”.
We mad the following associations for the workshop:

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 3

FIGURE 1

Notice that some of the Triggers are repeated under various Activities. This means that,
for the organization that participated in the workshop, the condition that had to exist for
the defect to surface could occur with different testing activities. It was hoped that the
pairing of Defect Activity and Trigger would better help the organization understand what
type of testing happened on the project.

Categorization using Defect Target and Type was more or less straightforward because
organization specific categories do not need to be created. ODC Defect Targets are
Requirements, Design, and Code. Possible defect Types are Algorithm/Method,
Assignment/Initialization, Checking, Function/Class/Object, Interfaces/O-O Messages,
Relationship, and Timing/Serialization. One difficulty in combining Target and Type is
that the ODC model does not specifically tie these two levels together. Although the
levels are generally tied together, in several cases there is not an alignment between the
Target and the Types that applies to that Target. This determination is left to the user’s

System TestProduct Test
Component
Group Test

Component
Test

Unit Test
Inspections/

Reviews

Workload /
Stress

Software
Configuration

Blocked Test
Mode

Hardware
Configuration

Recovery
Exception

Startup /
Restart

Workload /
Stress

Software
Configuration

Blocked Test
Mode

Hardware
Configuration

Recovery
Exception

Startup /
Restart

Test
Coverage

Test Variation

Test
Sequencing

Test
Interaction

Hardware
Configuration

Recovery
Exception

Startup /
Restart

Simple Path

Complex
Path

Design
Conformance

Logic Flow

Lateral
Compatibility

Backward
Compatibility

Language
Dependency

Concurrency

Side Effects

Rare
Situations

Activities
(dynamic)

Triggers
(static)

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 4

discretion. As a result, the engineers who participated in the workshop came to their own
conclusions regarding what Types should be grouped with particular Targets. This is
especially true in the case of Requirements and Specifications as no specific Type
definition refers to these work products1.

5.0 ODC Activity/Trigger Classification Results
The results of categorizing 71 high priority defects using the ODC Activity/Trigger
designations are:

Top 11 Testing
Activities / Triggers

Unit - Complex
Path
6%

System - Startup / Restart
6%

System - SW Config.
6%

System - Workload /
Stress 8%

Unit - Simple Path
7%

Comp. Group -
Test Sequence

10%

Comp. Group -
Test Coverage

14%

Comp. Group. -
Test Variation (Bench)

7%

Comp. Group -
Test Variation

 (Duration)
19%

Comp. Group -
Test Variation (other)

11%

Insp./Review - Design
Conformance

6%

FIGURE 2

The most significant percentage of defects found by particular types of testing are
Component Group Activities using various Test Variation, Coverage, and Sequencing
test techniques. When presented to the team, they agreed that a significant amount of
testing effort on this project was in these areas. As applied to test teams in general, the
ODC Activity/Trigger analysis is beneficial in that it confirms engineering judgment in
regards to what type of testing is currently finding defects. This may help teams be more
open to other testing alternatives in the future. For this project, however, the ODC
Activity/Trigger data did not help the team in suggesting ways they might change their
approach to improve future testing.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 5

6.0 ODC Target/Type Classification Results
The results of categorizing 93 high priority defects using the ODC Target/Type
designations are:

Defect Targets/Types

Reqt. -
Funct/Class/Obj

1%

Code - Alg./Method
34%

Code -
Funct/Class/Obj

2%

Code - Relationship
3%

Code - IF/O-O Msgs
3%

Code - Timing/Serial.
2%

Design - IF/O-O
Msgs
1% Reqt -

Alg./Method
1%

Design - Checking
1% Design -

Alg./Method
6%

Design -
Funct/Class/Obj

4%

Code - Assign/Init
13%

Code - Checking
29%

FIGURE 3

On this project, engineers were asked to use the ODC model but there was no effort
made to stop them from classifying defects based on their best engineering judgment.
This led them to combine defect Targets and Types although the ODC definitions and
examples do not indicate an overlap between these two levels. Once again, the new
definition of Defect Source was not available at the time of the workshop.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 6

7.0 Hewlett Packard’s Defect Origins and Types
The Hewlett Packard Software Metrics Council developed the following model in 19862.

FIGURE 4

• Origin – The first activity in the lifecycle where the defect could have been
prevented (not where it was found).

• Type – The area, within a particular origin, that is responsible for the defect.
• Mode – Designator of why the defect occurred (this level of the model is not

widely used within HP).

8.0 Hewlett Packard Classification Results

Unweighted Top Ten Defect Areas
HP Model (85 defects)

Design
Proc/InterPr

14%

Design Logic
13%

Design
Error Chk

11%

Design SW I/F
2% Design

User I/F
4%

Design
Data Def

19%

Code
Data Hand.

23%

Code
Logic
6%

Spec
HW/SW I/F

4%

Spec.
HW I/F

4%

HEWLETT
PACKARDc 1992 Prentice-Hall

REQUIREMENTS

OR

SPECIFICATIONS

FUNCTIONALITY

TEST SW

TEST HW

DEVELOPMENT

TOOLS

SPEC/RQMTS DESIGN CODE DOCUMENTATION

TYPE

CATEGORIZATION OF SOURCES OF SOFTWARE DEFECTS

ENV. SUPT.

ORIGIN

PROC. (INTERPROC.)

 COMMUNICATIONS

DATA DEFINITION

INTERNAL MODULE

LOGIC DESCRIPTION

ERROR CHECKING

STANDARDS

HW INTERFACE

SW INTERFACE

USER INTERFACE

FUNCTIONAL

 DESCRIPTION

LOGIC

COMPUTATION

DATA HANDLING

MODULE OR OBJECT

STANDARDS

INTEGRATION SW

OTHER

MODE

(WHERE?)

MISSING UNCLEAR WRONG CHANGED BETTER WAY

(WHAT?)

(WHY?)

*

* Other also can be a
type classification for
any of the other
origins.

SYSTEM/DOMAIN

 OBJECT MODEL

 OR CLASS DESIGN

OBJECT LIFETIME

 INTERFACE/

 IMPLEMENTATION

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 7

FIGURE 5

Weighted Top Ten Defect Areas
HP Model (85 defects)

Code
Data Hand.

10%

Design
Data Def

20%

Design
Proc/InterPr

16%

Spec
HW/SW I/F

9%

Spec
HW I/F

9%
Design
SW I/F

3%
Design
User I/F

4%
Design

Error Chk
12%Design Logic

14%

Code
Logic
3%

FIGURE 6

These pie charts show 85 defects from the same set as those categorized with the ODC
model. The first chart (Figure 5) shows the non-weighted distribution of defects. The
second chart (Figure 6) applies weighting factors, derived from industry data, to the
distribution3. Weighting factors vary from one software development project to another.
The important thing to remember is that weighting factors exist for every software
development project. If a project does not agree with the weighting factors listed above,
they are encouraged to adjust the weighting factors based on data gathered from their
environment.
The weighting factors used are:
• Specification = 14.25
• Design = 6.25
• Code = 2.5
One of the first questions asked is why a weighted calculation is needed? The answer is
that all defects are not created equal. In other words, it will cost a development team
more to fix a defect whose origin is Specifications than it will to fix a defect whose origin
is Code. The main reason for this is the number of work products that will need to be
altered to fix a Specification defect as compared to a Code defect. For example, a
developer will need to alter the specification, change the design, and potentially modify
multiple sections of the code in order to fix one specification defect. On the other hand,
a simple coding defect, such as a missing operator, requires a change to one work
product, the source code, in one place. This cost difference in fixing particular types of
defects becomes even more noticeable after the product is released. For example, if a
design defect is found after release, the potential cost could be millions of dollars to
redesign the product. In comparison, a simple coding error might be fixed by releasing
another version of the Software to the customer.

Based on the HP categorization, 63% of the non-weighted defects were attributed to the
Design Origin. This indicates that improved design techniques may lead to significant
improvements for this Origin. For example, small Design improvement strategies such
as the creation of data structure checklists for each type of data structure and requiring

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 8

process interface documents for each process that communicates with another process
can lead to significant improvements in the percentage of Design defects. Although the
distribution of defects will always equal one hundred percent, improvement steps like
these can help prevent defects in the front end of the lifecycle.

9.0 SW Testing Extension to the HP Model
The following model (Figure 7) was introduced at Quality Week Europe in 19984. This
model helps teams use defect trends from Hewlett Packard classification efforts to
consider what kinds of testing might be appropriate in the future.

FIGURE 7

The testing focus model applied to the non-weighted HP categorization shows the
following:

Top Ten Defect Areas
SW Testing Implications (85 defects)

HLC Integration
Test

Unit Test

Unit Test

Sub-system Int.
Test

System Test

Unit Test

Unit Test

Unit Test

Sub-system
Int. Test

Sub-system
Int. Test

FIGURE 8

CODE

UNIT
TEST

LOGIC

COMPUTATION

DATA
HANDLING

MODULE
INTERFACE/
IMPLEMENTATION

UNIT INTEGRATION
AND LOW
LEVEL
COMPONENT
INTEGRATION
TEST

DESIGNSPEC

USER
INTERFACE

REQMT/SPEC

FUNCTIONALITY

FUNCTIONAL
DESCR.

SYSTEM
TEST

PROCESS/
INTERPROC.
COMMUN.

HIGH LEVEL
COMPONENT
INTEGRATION
TEST

DATA DEFINITION

LOGIC
DESCRIPTION

HIGH LEVEL
COMPONENT
TEST

MODULE
DESIGN

ORIGIN
(WHERE?)
SEE HP MODEL,
FIGURE 1

TYPE
(WHAT?)
SEE HP MODEL,
FIGURE 1

TEST
LEVEL

ERROR
CHECKING

HW/SW
INTERFACE

SUB-SYSTEM
INTEGRATION
 TEST

Software Testing Focus

Based on Sources of Defects

NOTE:
UNDERLINED "TYPES" ARE
 APPLICABLE TO MORE THAN
ONE ORIGIN

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 9

As compared to Figure 5, Figure 8 shows the same pie wedges as the HP defect
categorization. For each wedge, the “Software Testing Focus” model (Figure 7) was
applied. The result is a representation of what a test team would consider as future
opportunity areas. It does not show what type of testing actually found particular
defects. The testing team would use the “Software Testing Focus” model to generate a
pie chart such as this and then analyze the defect Type definitions in the HP
classification model. As a result, they would apply the suggested “Software Testing
Focus” technique in the area of the work product indicated by the HP defect Type
definition.

For example, applying the “Software Testing Focus” model to the Design (Origin) / Data
Definition (Type) indicates a stronger focus on Unit Testing. The designation of the Data
Definition Type is “Incorrect design of the data structures to be used in the
module/product”. Based on this definition, the test team would examine the detailed
defect reports for those defects classified as Design / Data Definition. This would help
them to understand what parts of the product contains large concentrations of data
structures. Tests would then be written to further exercise this code with Unit Testing.
Although this technique is not the only way to determine where to focus testing, it is a
way to analyze current trends to help plan for the future. More importantly, the test team
can work with developers to help them develop better Unit Tests and encourage them to
find defects earlier with Design and Specification Inspections and Reviews.

10.0 Comparing ODC to Hewlett Packard’s Model

10.1 Data Comparisons

10.1.1 ODC Target/Types & HP Origin/Types
This discussion compares Figure 3 to Figure 5. There is a difference
between ODC's Target and HP's Origin. At the time of the workshop,
Target was defined as “the identity of the work product where the fix was
implemented.” Origin is defined as “The first activity in the lifecycle where
the defect could have been prevented (not where it was found).” The
difference between where the defect was fixed and how it could have
been prevented may account for why a large percentage of ODC Targets
were Code and HP Origins were Design. The actual fixes for these
defects may have been in the source code but the defects should have
been prevented with better design techniques.

The data in Figure 3 supports the Hewlett Packard categorization model
where there is overlap of defect Types across Origins. Although ODC
does not call out an overlap between Target and Type, the engineers
naturally classified different Types across multiple Targets. A good
example is the Algorithm/Method Type, which is represented in all
Targets. In the HP model, this overlap is called out between Defect
Origins and Types. For example, there is a defect Type of “User
Interface” that exists for both the “Design” and “Specifications /
Requirements” Origins. Although the Target/Type combination in ODC
might be an appropriate place for this type of overlap, no documented
correlation is made between the two levels. With the new definition of

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 10

Source in the ODC model, a new correlation between Source and Type is
possible and seems very similar to Origin and Type in the HP Model.

10.1.2 HP Testing Focus & ODC Activity / Triggers
This section compares Figure 2 to Figure 8. For this project, ODC
Activities and Triggers showed the engineers what kind of testing
currently finds defects. On the other hand, the HP SW Testing Focus
model looks at what might be done in future testing to find the defects that
exist within particular Origins and Types. Based on the data, only about
13% of the Activity/Trigger combinations are attributed to Unit Testing.
This data by itself probably indicates that defects found in Unit Test are
not being logged consistently. However, when combined with the HP SW
Testing Focus data, a different conclusion is possible. The HP SW
Testing Focus model indicates that additional emphasis on Unit Testing
might be appropriate when applied to particular HP Origin and Type
definitions and areas of code. For this project, the data indicates that if a
testing organization wants evidence to back up what type of testing is
currently finding defects, ODC Activities and Triggers may provide some
insight. If the organization is interested in improving the testing process,
the HP models provide some options.

10.2 Process Comparison
The HP model is specifically designed to maximize the possibility for process
improvement and incremental change. There are only a few levels and the
definitions within the levels do not typically change (although a few Types have
been added in the last decade to account for Object Oriented systems). The
process to use the HP model is well documented and intuitive. In a nutshell, the
process is:

o Categorize defects using the HP model.
o Choose specific, high risk, defect areas to target for process

improvement.
o Engage in Root Cause analysis to determine the causes of these

categories of defects.
o Generate a defect prevention plan, with action items, for major defect

areas.
o Apply the SW Testing Focus model as described to determine testing

focus on the next project.
o Determine action plans and assign owners.
o Execute the plans on the next project.
o At the end of the next project, categorize again and re-evaluate the defect

trends.
o Document changes.

A primary focus of the HP model is that all defects are not created equally.
Therefore, the Hewlett Packard process puts emphasis on defect prevention and
early defect detection in the front end of development (requirements and design).
The emphasis is on what can be done to improve and better engineer Software
Development and Testing in the future.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 11

Unlike the HP model, the ODC model is designed for use throughout the lifecycle
of a product. On this project, it was difficult to determine a clear, consistent
process for using ODC to achieve the objectives we had outlined.

10.3 Specification / Requirements Comparison
Requirements or Specifications are tailored to consider what problem the product
will solve. Software Design, on the other hand, refers to what solution exists to
solve the problem. For example, a simple Requirement for a LaserJet printer
might be “The printer must print at twelve pages per minute.” The design would
then specify what features must be in the Hardware, Firmware, and Software to
cause this to happen. The HP defect model clearly delineates the difference
between a Specification/Requirement and a Design defect. The ODC model, on
the other hand, has few references to the Specifications or Requirements. It is
interesting to note that the current definition for ODC Defect Source, as listed on
their web page, is “Identifies the origin of the design/code which had the defect”.
No mention of Specifications or Requirements is made in the definition. In
digging deeper into the web page, Requirements are mentioned as one possible
Source, but are not discussed in detail. Another example of the lack of
Requirements or Specifications focus in the ODC model is at the Type level. The
ODC Type is currently defined as “The nature of the actual correction that was
made”, but no Type definitions contain a reference to Requirements or
Specifications. Requirements or Specifications are a necessary work product of
any software system. Because of this, a defect categorization model should
include buckets to handle defects occurring in Requirements or Specifications.

10.4 ODC Type and HP Type
Based on the ODC definitions that were available at the time of the workshop,
one of the most logical comparisons is between ODC Type and HP Type. When
the workshop was conducted the definition for ODC Type was “For the particular
defect target(s), what was the specific problem?” The most recent definition for
ODC Type is “The nature of the actual correction that was made.”1 The definition
for HP Type is “The area, within a particular origin, that is responsible for the
defect.” The focus of ODC Type seems to be on the actual correction to fix the
defect. The emphasis of the HP model is different and does not necessarily
reflect where the correction was made to fix the defect. Rather, it focuses on
what action plans are put in place that improve the process around the category
of defects represented by the Type. For example, in the case of defects with a
Code Origin, the actual correction to fix the defect is likely made in the source
code. For the Design and Specification/Requirement Origins, the fix is more
likely to improve a process that is eventually used to change the work product.
Keeping in mind these differences between ODC Type and the HP Type, a
further comparison is possible.

10.4.1 Types with Reference to Data
The HP Model has two clear Origin/Type combinations that are focused
on problems with data, which are:
Design / Data Definition: Incorrect design of the data structures to be
used in the module/product.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 12

Code / Data Handling Problems: Initialized data incorrectly, accessed
or stored data incorrectly, scaling or units of data incorrect, dimensioned
data incorrectly, or scope of data incorrect.

These definitions and the application of them are very specific and
straightforward. Based on experience in using the model, once an
engineer is accustomed to using clear Type definitions such as those
found in the HP Model, it typically takes them between 1-2 minutes to
categorize a defect.

The ODC Model has several Types that mention data, which are:

Algorithm/Method
Efficiency or correctness problems that affect the task and can be fixed by
(re) implementing an algorithm or local data structure without the need for
requesting a design change.
Checking
Errors caused by missing or incorrect validation of parameters or data in
conditional statements.
Function/Class/Object
The error should require a formal design change, as it affects significant
capability, end-user interfaces, product interfaces, interface with hardware
architecture, or global data structure(s)
Relationship
Problems related to associations among procedures, data structures and
objects.

Each of these definitions suggests data problems of some kind.
Algorithm/Method mentions that this Type is likely located in the code.
Function/Class/Object mentions that a formal design change is necessary
to fix this Type of defect. Relationship and Checking make no mention of
whether this Type applies to Requirement, Code, or Design. When Type
is not associated to Requirements, Design, or Code it is difficult for
engineers to understand and it takes more time to categorize defects.

Engineers have limited time to classify defects. It is important that critical
elements of the model are clearly defined and understood so that
categorization can occur as quickly as possible.

10.5 Resource Comparison
When using the ODC model it is often assumed that at least one full time
resource per project is often needed to fully understand, explain, and implement
the model. This resource is involved in defect analysis throughout the life of the
project and is responsible for communicating and sometimes implementing
needed adjustments, based on defect trends, with the development team. The
Hewlett Packard model is purposely designed to have a minimal amount of
resources required to implement the model. No full-time resources are needed.
Often, the model is implemented as part of post-project retrospective. The
resources required to implement the HP model are:

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 13

- A facilitator and a local improvement champion, who choose a set of defects,
organize the workshop, and generate/report post workshop results (8-10
hours per).

- The development and/or test engineers who worked on the project and attend
the workshop (3-4 hours per).

For example, if a total of ten development/test engineers worked on a project, it
would cost approximately 60 engineering hours to implement the HP model.
That’s it!

11.0 Comparison Question and Answers – What was learned?
Although all possible comparisons could not be presented in this paper, following are
few questions and answers that help compare the HP model with ODC:

• Question: Which model is better for me, under what conditions?
Answer: If your goal is to examine defect trends on past products and use those
trends to initiate process improvement, early defect detection, and defect prevention
on future products, then the HP model and process is specifically designed to help
you achieve this. ODC seems to be applied more when the primary objective is to
closely examine defect trends throughout the life of the project.

• Question: What does each model cover that the other doesn’t?
Answer: ODC looks closely at what happened in the Code and Design of the
product. In addition to Code and Design, the HP model provides clear definitions for
Requirements and Specifications defects. The HP model links together Defect
Origins and Types so that it is clear which Types apply to which Origins. After the
initial trends are determined, the HP model looks closely at root cause analysis,
using fishbone cause-effect diagrams, to determine what could be done differently to
improve future processes.

• Question: When should each model be used?
Answer: The ODC model can be used throughout the product lifecycle. The HP
model is typically used after development and testing is complete as part of a project
retrospective.

• Question: What are the results from using each model?
Answer: HP model Origin/Type results shows major defect areas where process
improvement should be applied to prevent defects in the future. The HP SW Testing
Focus model takes the Origin/Type information and points to areas where future
testing should be improved. The HP results are focused on future improvement.
The ODC Activity/Trigger results showed the Test team what they already knew in
regards to how they tested. The Target/Type results showed the source code areas
where defect fixes actually occurred. For this project, the ODC results did not help
the team with future process improvement.

• Question: What does it cost to use each model?
Answer: ODC often takes a full-time resource or resources to fully implement. The
HP model, on the other hand, can be implemented on a project for a cost of 60
engineering hours. This assumes one facilitator (10 hours), one product champion
(10 hours), and 10 engineers (4 hours each to attend a workshop).

• Question: Where can I find out more?
Answer: The ODC model has a web site1. This web site contains a definition of the
model and experiences with ODC. Chapter 9 of the “Handbook of Software
Reliability Engineering” contains a discussion of ODC5. The HP model is
documented in “Practical Software Metrics for Project Management and Process

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 14

Improvement”2 and “Successful Software Process Improvement”6. There are also
many papers published on each model.

• Question: Are the models mutually exclusive or complementary?
Answer: This really depends on the goals for defect analysis and which parts of the
models are used. If a user is trying to improve SW Testing they might classify using
ODC Activities/Triggers to get an idea about what type of testing currently finds
defects. They would also categorize using the HP Model and apply the SW Testing
Focus extension to understand what future testing improvements might be
appropriate. Another example is when a project is just starting defect analysis. In
this case, the HP model is used to generate excitement about process improvement
and defect analysis because large improvements often occur with a minimum
investment. After the excitement and sponsorship for defect analysis is present,
applying parts of the ODC model may be appropriate at different times in the
lifecycle.

• Question: Which model works better for whom?
Answer: The ODC model may be more appropriate for engineers who are
convinced that defect analysis will benefit their project and sponsors are willing to
invest in the effort it takes to implement ODC successfully throughout their lifecycle.
In a three to four-hour workshop, the HP Model can be taught and used by engineers
who have never done defect analysis. This is largely due to the tailored process
that, after each step, clearly suggests the next step. This makes the HP model
attractive to the defect champion who wants to quickly get people new to defect
analysis excited about positive change. With a relatively small investment, using the
HP model, a project can get an idea about their defect trends and identify focus
areas for future improvement.

12.0 Project Specific Conclusions
We live in a world of efficiency and effectiveness. These words are used so much, in
fact, that they often seem overloaded. In the world of business, however, efficiency and
effectiveness are essential for survival. If a product, service, or process doesn’t perform
to extremely high standards (effectiveness) with the least amount of resource necessary
(efficiency), it will be replaced with something that does. Using the ODC model
developed by IBM, the original objectives of this project were to:

• Learn from existing defects to improve defect-finding methods.
• Determine what conditions had to exist to find the defects.
• Understand what defect finding methods should be applied to code areas.
• Find defects more effectively and quickly.

Almost everyone involved in the project, especially the project sponsor, felt that the most
important project objectives were not met using the ODC model. There were a few
positive outcomes. Based on a post-workshop survey, 80% of the engineers like the fact
that development and test engineers were in the same room analyzing the same
defects. This communication between those who write and those who test code was
seen as a major positive factor. It was also felt that the workshop confirmed how the test
engineers knew they were testing. This was an important realization, but did not help
with what should be done to improve future testing. Finally, the sponsoring manager did
say she would support some form of defect analysis in the future, although not
necessarily in the way it was implemented for this project. This paper provides some
insights for a project considering defect analysis. Both ODC and the HP model

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 15

represent options. Based on the analysis of both models as applied to this project, it is
the position of the author that the HP defect model with the Software Testing Focus
extension should have been used for the following reasons:

• The engineers using the process were new to defect analysis.
• The process is well established, proven successful, and documented.
• The models are centered on future process improvement and are change oriented.
• Process improvement is directed toward the front end of the lifecycle

(requirements/specifications, design) where the defects cost less to find and fix.
• The implementation strategy was purposely designed to use the least amount of

resources possible for analysis of defect trends.

When an organization engages in a defect analysis activity such as this one, the
question “what will the people on the project do differently?” should be asked. For this
project, the answer is not ideal. Based on conversations with the project’s sponsor, very
little will be done differently based on the ODC results. It is felt that if the HP defect
model with the Software Testing Focus extension had been used, more efficiency and
effectiveness would have resulted, the customer would have been more satisfied, and
the project objectives would have been realized. Although the results of this project
were not ideal, it is hoped that what was learned from this paper is beneficial to those
involved in defect analysis. If these individuals will pause to reflect, compare, and
carefully consider the options available to them before they start defect analysis, then
this paper will prove its worth.

References
1. IBM Research Group. “Details on Orthogonal Defect Classification for Design and Code”.

IBM Center for Software Engineering (1999),
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

2. Grady, Robert B., “Practical Software Metrics for Project Management and Process
Improvement”. Prentice Hall, Inc., (1992), pp. 122-137, 223-227.

3. Boehm, B., “Software Engineering Economics”. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
(1981), p. 40.

4. Huber, Jon T., “Software Defect Analysis: Real World Testing Implications & A Simple
Model for Test Process Defect Analysis”. Software Research Institute’s Quality Week
Europe, November 1998.

5. Lyu, Michael R., “Handbook of Software Reliability Engineering”. McGraw-Hill
Companies, Inc., (1996), pp. 367-399.

Jon T. Huber jon_huber@hp.com
Customer Solution Test Engineer, (208) 396-6551
Hewlett Packard Company Metrics, 1999

 Hewlett Packard Company, 1999
Page 16

6. Grady, Robert B., “Successful Software Process Improvement”. Prentice Hall, Inc., (1997),
pp. 53, 64, 110, 158, 160, 189, 196, 198, 215, 236, 260, 272.

Acknowledgements
I would like to thank Fran McKain for sponsoring the project that allowed this comparison,
Michele Moore who helped organize it, and Felix Silva for helping facilitate the workshop.

Thanks go to my section manager Raul Fuentes and team lead Becky Swanson. It’s great to have
leaders that believe people do a better job when they are given the opportunity to pursue their
passion.

I would especially like to thank Bob Grady, author of three books and numerous articles, for
introducing me to Software Measurement, Defect and Root Cause Analysis. His experience,
comments, insights, and suggestions always prove to be accurate and important.

Jon Huber

Jon Huber has worked in the software industry for over a decade.
After graduating from The University of Arizona, he went to work as
a software engineer for IBM in Austin, Texas. After a few years, Jon
took a software engineering job with Micron Semiconductor, Inc., in
Boise, Idaho to move closer to family. At IBM and Micron, he
worked primarily with object-oriented software systems.

Jon now works for Hewlett-Packard in the LaserJet Business
Products division in Boise, Idaho. For more than three years at HP,
he led the LaserJet Common Software Metrics Initiative which
provides measurement consulting and a metrics tool for over 34
past and current LaserJet products. Jon also champions defect and
root cause analysis and has facilitated eight defect analysis projects
for HP. While working at Hewlett-Packard, he has authored several
papers for Quality Week, Quality Week Europe, and Applications of
Software Measurement/Management conferences. Jon recently has
been asked to help lead a task force to implement customer
solution testing in the Hewlett-Packard LaserJet Test Lab.

Outside of work, Jon enjoys family activities with his wife and four
children, community service in a local youth organization, writing,
jogging, and lifting weights.

	Paper
	Bio

