A Reasoning White Paper

Automated Software Inspection:

A New Approach to Increased
Software Quality and Productivity

© Reasoning Inc 1

Table of contents

I INT RO DU CT I ON L iiiiiiiiiuteteeiresssesesseeetesessssssseeeesessssssssssseeesesssssassssseeesssseaasssssessesssaaansssseesessessassssseeesssssas 3
INSPECTION OV ERV I E N iiiiiiiiititiiiiiiiiissteeetesssssssssssestesssssasssseesssstssaasssssessesstiaaisseseetessessassssreeeszssaas 3
THE LIMI T S OF T E ST IN G ..t iiiittiiiiiiiiiiiietteiiitsssisasseseeeeesssssaaasseeeeeesssssaasssseeeeessesaaasseseereeseeemmmssreeeerereas 4
“TESTING ISNEVER FINISHED, ONLY ABANDONED” ...ettttiiiiieeterteeeesssssaeisssteesssssssssssseeesssssssssssesesessssssmsnn 5
TRADITIONAL INSPECTION TECHNIQUES........oooiiiiiiiiiiiiiiiiiiiiiiees 6
FORMAL INSPECTION ..ttt tteteteeteeessssaeesesseeessssasassesesesssssaaassseseessssssaasssseeeessssasasseseesssssssasssreseessssssaasssreeessssans 6
I NDEPENDENT CODE REVIEWS ...iiicuteteteeeesteaassesteesssssaaassesesssssssasssssesssssssssasssssesssssssssssssssessssssmmssssseeessssnnn 6
AUTOMATED SOFTWARE INSPECTION: THE NEW APPROACHevvvtiitieiiieeieeeeeeeeeeeeseeeeeseseseeeseeeeeseseseeeseeeee 7
ASI TECHNOLOGY AND METHODOLOGY ...oooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiiiiiieieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeereee 7
CODE ANALY SIS TECHNIQUES .. uuttetteeisiieeesseettesssssaasssesesssssssaasssseessssssssasssstesssssssamsssssesessssssssssrssesessssssmnnes 7
TYPESOF DEFECTS FOUND BY A S| .oiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeteseeeeesesesesesessteseeeeeseeetetee . 8
METHODOLOGY FOR ASI TOOL S, . uuuuuutuuuuurusususssusssssssssssnsssnnnns 8
INTEGRATION INTO THE DEVEL OPMENT LIFECY CLE uuutttttttetieeieirereeeesesssssssseseeesssssmassssseeessssmmmsssseesessssan 9
ILLUMA: REASONING 'S AS]I SERVICE ...uiiiiiiiiiiiiiiiiiiiiiiiiiiaisseeeeesisissaseeeeeeesssiaamsseeeeterresmmnrereeeieeeaas 9
JLLUMA TECHNOLOGY tttttuuuieiieeteersnsuesesseesesssussessssseesssssssseeeessssestestsesssmtteteessssteere . 10
JLLUMA METHODOLOGY ttutueiiietettsususesseesesssunessssseessssssssseesesssssssesssesssmtteteeesssmtteere 10
SUM M A R Y ottt iiii ittt ittt ittt it tie ettt teesssasasseeeeeeestaasssseeeeeesssaasssseeesesseeaanssseeeeesseeassseseeeesssasanssseeeeeesssansnsne 10
REFERENGCESot nnansnan 12
ABOUT REASONINGootiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeseeeeeeeeeeeseeeeeeeeeeeeeeeeeeerereeeeeeeeeeereereeereeeeemmme 12

© Reasoning Inc 2

Introduction

Quality is an elusive goal throughout the software industry. The common assumption is that there simply
is no efficient way to improve quality without significantly lengthening the development cycle, increasing
development costs, or both.

Releasing quality software on schedule and on budget is almost impossible. Ever-shorter development
cycles, limited engineering and QA resources, and increasing software complexity have combined to
cause a decrease in the quality of software and an increase in the number of software defects. The
economic impact from these defects is extremely high. Software defects are the leading cause of
downtime for mission-critical applications and cause serious damage to the software's eventual direct or
indirect users and to the development organization.

The software engineering community has long known that software inspection is an effective technique
for removing defects with substantial long-term benefits. Inspection succeeds because it detects and
removes critical errors early in the development process, before code reaches testing or deployment.

Automated Software Inspection (ASI) technologies are now emerging. These technologies, delivered as
commercial tools or services, can locate many common programming faults - the same faults that can
cause some of the most damaging failures. The strategy behind ASI is to analyze the source code before
it is tested and identify potential problems in order to re-code them before they manifest themselves as
programming bugs. The most innovative aspect of automated inspection is its ability to debug code even
before it has been executed.

This paper discusses the reasons why ASI is needed, looks at the defects ASI can detect and how they
are found, describes the technology behind ASI and how it complements traditional testing techniques,
and compares and contrasts the available solutions.

Inspection Overview

Software inspection or code review is a visual examination of source code to detect defects or adherence
to coding standards. It is important to note that inspection is not the same as testing - both are needed to
ensure the highest quality software- and there are several important differences between the two.

* When we test, we execute the code

* When we inspect, we review the code

* Testing occurs during the QA/testing phases of development
* Inspection occurs during the coding phase

There are other differences as well - testing typically does not test all code paths and is therefore
frequently hit or miss. With inspection, defects can be found on infrequently executed paths that will likely
never be included in test cases.

Software inspection does not execute the code, so it is hardware-independent, requires no target system
resources or changes to the program's operational behavior, and can be used long before the target
hardware is available for testing purposes.

Figure 1 shows where inspections fit within the software development lifecycle. By visually inspecting

source code and finding and removing defects early in the process, code quality is improved and a lower
lifecycle cost is achieved.

© Reasoning Inc 3

Inspection
Looking at | Code

the code |ﬂtegrﬂtiﬂﬂ
Tasting
TESt Running
the code

Design

“Inspection is by far the most effective way to remove bugs.”
-Capers Jones

Figure 1: Inspection in the software development lifecycle

Code that has been subjected to inspection enters testing with higher quality, so testing time and effort is
reduced. Since inspection is an examination of the code, executable code and test cases are not
required. Inspection allows software to enter testing with higher quality which reduces the time and effort
required to complete testing

The limits of testing

One of the best lines of defense in improving the overall quality of software is to improve software testing.
Testing is acknowledged to be a critical part of total quality assurance, but it also has limitations,
including:

* |tis expensive and time-consuming to create, run, validate and maintain test cases and processes.

* Code coverage—the percentage of statements tested—drops inexorably as the system grows larger,
meaning that testing validates less of the system.

* |t can be difficult and time-consuming to trace a failure from a test case back to the root cause so that
developers know what code to change.

* Testing cannot uncover all potential bugs. A study conducted by Capers Jones concluded that testing
typically removes less than 50% of the defects. Even the best testing processes remove at most 85%
of all software defects.

So, while comprehensive software testing is an important aspect of any quality assurance program, it is
not a panacea. The bottom line is that software testing, although extremely valuable, is inadequate in light
of the increasing need for highly reliable software. Ultimately, testing alone cannot guarantee defect-free
code, nor can it ensure a sufficiently high level of software quality.

Debugging tools based on code instrumentation, such as Purify, BoundsChecker, and Insure++, are not

able to find errors that aren’t caught by reproducible test cases. They require that the application be
complete and executable (or a test harness constructed) before they can be used. Also, they may not

© Reasoning Inc 4

easily be able to support use of custom memory allocation routines (i.e., the program has its own versions
of malloc and free). These tools so greatly expand the code size (2x - 6x) and the data size (many
megabytes) that they may become unusable because of resource constraints. Very often, program
execution is so greatly affected (10x - 100x slower) that this performance overhead can make some test
cases too slow to run.

“Testing is never finished, only abandoned”

To understand the above quotation from the Encyclopedia of Software Engineering, one must understand
the concept of code versus path coverage. The diagrams below illustrate the problem. Figure 2
represents a single function (but the concept applies equally well to a module or task), which has a single
entry, and for simplicity, a single exit. Execution begins at the top and exits at the bottom.

" "
agmy -

B

Illllllllll'lllﬁllllll,l EEEEEEEEmEEEEN -

Figure 2: Function paths

Even if total code coverage is achieved, it is still not sufficient to ensure that there are no serious defects.
Complete testing requires complete path coverage, not just statement coverage; all paths that connect
two statements must be tested, not just the individual statements. The difference is illustrated in Figure 3,
where the solid black lines show a number of paths that were missed by the test cases.

N
§\\

HEE

Figure 3: Paths missed by test cases

© Reasoning Inc 5

Achieving total path coverage is even more difficult than total code coverage. The code making up a large
embedded system may contain literally billions of paths. Even if a comprehensive test suite were
somehow to be constructed, the time and cost required to run it would be prohibitive.

Since testing cannot achieve full coverage and requires expensive test case development, other
techniques are necessary to cost effectively deliver high quality software. Software inspection is a
technique that overcomes manylimitations of testing.

Traditional inspection techniques

Code inspection is an old idea, going back at least to Fagan’s 1976 paper Design and Code Inspections
to Reduce Errors in Program Development [Fagan, 1976]. Since that time, a number of experiments and
case studies with a wide variety of methodologies have demonstrated how well inspection can work. An
extensive bibliography can be found in The WWW Formal Technical Review Archive [Johnson, 1999].

Code inspections, as normally practiced, are a labor-intensive activity, often involving formal code
reviews, structured walk-throughs, and similar techniques. The assumption has always been that
programmers, who should be carefully examining the code, should detect the defects.

The results of inspections can be impressive, but too often inspections may not be performed well or at
all. Management sees inspection as a drain on resources, and programmers often feel constrained by the
formality of the process. The sheer volume of code involved is another constraint, as modern programs
and systems often involve hundreds of thousands, or millions, of lines of source code. Therefore it is
recognized that manual inspections can only be applied effectively on samples of the source code.

Until recently, there have been two main approaches to software inspection: formal inspections and
independent code reviews. ASI is a new approach based on using computer programs to perform part of
the inspection. We will briefly discuss the three types of inspection.

Formal inspection

The formal inspection is the most commonly used inspection technique. Formal inspections have only
one goal - to find defects. They perform vigorous examinations of the code at points of stability, and utilize
trained inspectors who follow defined steps to locate defects. In addition, the results uncovered by formal
inspections can be used to help improve the development process. However, they are not useful for
evaluating team member performance, reviewing programming style or exploring alternative solutions.

Unfortunately, formal inspections can fail for many reasons. A common mistake is inviting management
to the inspection. This can result in a lack of candor - developers may fear that management will use
defect data in future performance reviews. It is also difficult to achieve consistent quality with manual
inspections because so much depends on the individual performing the inspection. In addition, there can
also be problems motivating developers to perform inspections on an on-going basis. Developers usually
prefer to create new code rather than review existing code.

Independent code reviews

In an independent code review, an inspector reviews a small set of representative source code, using a
well-defined language-independent template. High-level design considerations and coding specifics can
be analyzed: for example, is functionality being re-used within the system? Has the programmer hidden
debugging code? Have C++-specific capabilities been efficiently utilized?

Once the independent code review is completed, the results are documented and presented to the project

manager, designers and programmers. This document is then reviewed and a set of priorities defined.
Finally, a plan for either immediate or transitional change is created and implemented. The process is a

© Reasoning Inc 6

thorough one, but here too there is a risk that individual programmers will feel singled out for criticism in a
forum of their peers.

Automated software inspection: the new approach

ASI offers greater efficiencies than any technique involving manual inspection, given the high level of
importance attached today to achieving fast development turnaround and time-to-market pressures.
Since there is no 'people judgement' involved in automated inspection, it comes much closer to the ideal
of egoless programming.

Lint-like tools such as Flexelint from Gimpel Software and QAC from Programming Research are two
commonly used ASI tools. These tools perform two functions. They verify that software complies with
coding standards and they generate defect-warning messages of possible software defects.

Reasoning provides llluma as an outsourced ASI service. Illuma delivers reports that show the cause
and location of software defects in C and C++ applications.

The next section discusses ASI in more detail.
ASI Technology and methodology

The key question is - how can one achieve in-depth analysis of software that automatically inspects an
application for critical defects? The answer is through the use of static analysis and abstract interpretation
techniques. These techniques are discussed briefly below, along with ways to apply the technology.

Code analysis techniques

The starting point for the representation is abstract syntax trees. A parser reads the source code and
produces an abstract syntax tree, which models all of the structural information contained in the source
code while removing syntactic details such as the formatting of the source text. For example, an ‘if’
statement such as ‘if (a <b) g=c + d else g = e + f would be represented as an abstract syntax tree as
follows: the top-level node would represent the entire if statement. There are three subtrees under the if
statement node:

- asubtree that models the condition "a < b" would be under the if statement via the if-condition attribute
- the subtree that models the assignment "q = ¢ + d" would be under the attribute "if-then-actions"
- the subtree that models the assignment "q = e + ' would be under the if-else-action attribute.

The next step is to annotate this abstract representation with information about the control structures

(control flow) and the information flow (data flow) of the application. Figure 4 below shows part of the
parse tree and the entire control flow graph of the following program:

sum =sum-10;

if (sum < 0)
{x=3;
}

else
{x=4
}

sum = sum + X;

Depending on the complexity of the analysis and representation techniques used, this representation can
be used to detect real defects. Simple examples are the warnings generated by a compiler or a tool like
Lint (see [Aho, Sethi, Ullman, 1988] for an overview of the used techniques).

© Reasoning Inc 7

sum=sum-10
if (sum=0) {
x=3; sum=sum-10;
lelse{ l
=4,
Assignment F
Statement }
/ \ SUM=SUM+X:
Identifier Expression T
Sum Identifier [)pe|rat0r Inte|ger x=3; x=4;
Sum Minus-op 10 \A_A/
SUM=SUM+X;
Parse Tree Control-Flow Graph

Figure 4: Example parse tree and control-flow graph

Types of defects found by ASI
ASI can uncover a range of structural defects that can cause crashes and data-corruption.

Certain constructs available in programming languages require corresponding constructs to occur earlier
or later in the program. If this corresponding construct does not occur, or may not be executed under
certain circumstances, the program has a structural defect. These structural defects reduce an
application’s reliability and are independent of programming language and application usage.

Examples of structural defects in the C/C++ language includes the following error classes:

* NULL pointer dereference; a dereference of an expression that is a NULL pointer.

¢ OQut of bounds array access; expression accesses a value beyond the end of an array.
* Memory leak; reference to allocated memory is lost.

* Bad deallocation: deallocation is inappropriate for type of data.

¢ Uninitialized variable: variable is not initialized prior to use.

Methodology for ASI tools

ASI tools are only able to perform a portion of the inspection process. ASI tools generate a large volume
of defect-warning messages that are false positives; in other words, the tool “thinks” it has found a defect,
but a deeper analysis of the context shows that the reported issue is not a problem in reality. Everybody
is familiar with the non-relevant warnings generated by compilers. This false positive problem is quite
severe in ASI tools because the false positive rate from tools like Flexelint typically exceeds 50 false
positives for each true positive.

© Reasoning Inc 8

In some cases false positives can be eliminated by creating filters that are able to automatically remove a
subset of the false positives. However, a manual process is required to eliminate the false positives not
caught by filtering. Developers need a way to evaluate each of the defect-warning messages to
determine if it is a true defect or a false positive. To use ASI tools effectively, development organizations
must hire or train inspection experts and implement a methodology for evaluating and removing false
positives to ensure that the ASI results contain true defects and not a large number of false positives.

The cost and effort required to find a defect from ASI tools is high because a large number of false
positives must be manually evaluated and eliminated for each true defect identified. To eliminate the
false positives from a commercial application can require thousands of hours of developer effort.

Integration into the development lifecycle

Research conducted by Capers Jones has shown that the cost of repairing a defect is reduced
dramatically when the defect is found early in the development cycle. Therefore, for maximum benefit,
automated inspections should be performed near the end of the coding phase before the software has
been released to QA/Test. Since ASI does not require a complete (compilable) application, subsystems
can be inspected even before integration with other components of the application.

Many of today’'s development efforts are global, with teams in different locations contributing different
portions of code to any given application. With ASI, a development organization can assess the quality of
each segment of code at each step of the development process. Each portion of an application can be
independently inspected as it is submitted, and then the integration of the various code components can
also be inspected. The result will be a cleaner solution from start to finish.

Periodic re-inspections are the best way to ensure applications remain defect-free during development
and maintenance. Inspections are scheduled to achieve a maximum defect removal rate. Typically,
inspections are performed halfway through the initial coding cycle, at the beginning of code or feature
freeze, and just before testing is finished and the code is released (see Figure 5).

Products | Time

Code] | Freez
Server 3.0 31
Inspect

Grent 30 H 3.1“
Server 4.0 H

Client 4.0

Figure 5: Integrating ASI into the development cycle

llluma: Reasoning's ASI service

llluma is the leading automated software inspection service, designed to boost the productivity of software
development organizations coding in C and C++. The traditionally expensive and time-consuming
process of defect detection is completed in five to ten business days. Illuma delivers two reports: one
identifies the location and conditions that cause each defect and the other identifies application problem
areas.

© Reasoning Inc 9

llluma makes software development organizations more productive in three key ways:

* Reduces cost by finding defects less expensively
* Saves time by finding defects faster
* Improves quality by finding defects testing misses

[lluma technology

llluma's analysis engine uses several program representations to verify that preconditions for the
operations that are performed by the application are satisfied. For example:

* if a pointer is de-referenced, then the value of the pointer at the time of the dereference must be a
valid address for the target data type of the pointer.

* if an array is indexed, then the value of the index must be within the upper bounds of the array.
* if a pointer is freed, then it must point to dynamically allocated memory.

The analysis engine must prove that the preconditions are true for all feasible paths leading to the
operation. It uses an efficient symbolic evaluation algorithm to generate the paths and to track variable
values along the paths, and determines if the preconditions are satisfied. If any precondition is not
satisfied, then a violation is signaled. For a deeper discussion of the technology behind llluma, the reader
is referred to Value Lattice Static Analysis, A new Approach to Static Analysis [Brew & Johnson, 2001].

[lluma methodology

Although such powerful analysis technology is a key element in ASI, there are other points that must be
considered. Reasoning delivers llluma as an outsourced service. A service engagement combines a
comprehensive high-speed automated analysis of each application with the expertise of inspection and
language specialists. llluma is delivered as a service so development organizations do not need to have
in-house inspection experts or a methodology to verify that the results are true defects and not false
positives.

There are two advantages of a service model. First, it has enabled Reasoning to develop a specialized
set of proprietary technology, processes and tools that allow the company to eliminate nearly all of the
false positives. Second, there is no impact on the development organization’s resources. The time
developers would have spent manually performing inspections or eliminating false positives from ASI
tools results can be applied to other development activities.

Summary

Software failures are expensive and time consuming to detect, cause significant damage, and can
seriously hurt a software development organization's reputation and business. ASI provides a fast and
cost effective way to improve software quality. Through the regular use of ASI, the software development
industry has the opportunity to achieve quality levels impossible to attain in the past.

Now that ASI technologies are a reality, software inspection can be performed quickly, providing
tremendous benefits. New methodologies, such as the Illuma service from Reasoning, are well positioned
to offer all the advantages of ASI to any company that can benefit from higher quality and a more
productive development organization.

When it comes to improving quality assurance and testing for applications, including ASI early in the

development process will result in significant cost savings. This is an area where outsourcing inspection
to a reliable inspection service company will yield substantial returns. Using the right outside resource to

© Reasoning Inc 10

inspect and assess applications will substantially reduce the cost and time required to remove defects
and will increase an application’s reliability and quality.

llluma is easily employed early in the development process before the application can be executed. It
finds defects at the source code level and pinpoints their exact location. It produces a detailed report of
the defects found and presents them in a way that a developer can easily diagnose and fix each defect.
The inspection process involves no internal resources and facilitates the implementation of fixes before
code is ready for internal QA.

Combined with conventional testing, ASI will allow software projects to obtain the benefits of combining
traditional and newer methods in a balanced, cost-effective way so that software projects can yield new
levels of quality. Through outsourcing, the ASI technology becomes available in the most flexible and
non-intrusive way possible.

© Reasoning Inc 11

References
Aho, A., Sethi, R., and Ullman, J., “Compilers, Principles, Techniques and Tools”, Addison Wesley, 1988.

Brew, W. and Johnson, M., “Value Lattice Static Analysis, A new approach to static analysis finds errors
that slip through the cracks”. Dr. Dobbs, March 2001.

Chou, T., “Fault-Free Software—The Case for Automated Software Inspection”, Enterprise System
Journal, February, 1999.

Fagan, M., “Design and Code Inspections to Reduce Errors in Program Development”, IBM Systems
Journal,Vol. 15, No. 3, pp. 182-211, 1976. This pioneering work demonstrates quality and productivity
improvements using formal design and code review.

Grady, R.B., “Successful Software Process Improvement”, Prentice-Hall, Englewood Cliffs, 1997.
Humphrey, W.S., “Managing the Software Process”, Addison-Wesley, Reading, 1989.

Johnson, P., “The WWW Formal Technical Review Archive”, URL:
http://www.ics.hawaii.edu/~johnson/FTR, 1999. This site contains an extensive bibliography on Formal

Technical Review (FTR), a term encompassing methods such as Fagan Inspections, Active Design
Reviews, Phased Inspections, a few inspection tools are mentioned.

Jones, C., “Software Quality in 1999: What Works and What Doesn’t”.

About Reasoning

Reasoning, Inc. is a leading provider of automated software inspection services that help software
development organizations get products to market with lower costs and higher quality. The company's
business is focused on organizations that develop C and C++ applications. Reasoning is headquartered
at 700 East El Camino Real, Mountain View, California, 94040. Contact Reasoning at (650) 429-0350 or
at http://www.reasoning.com.

About the Author

Jasper Kamperman, Ph.D., is Principal Member of Technical Staff at Reasoning, Inc. At Reasoning,
Jasper has been a leading developer of the technology powering Reasoning's llluma service. Jasper has
a master's degree in Physics from the University of Utrecht, and holds a Ph.D. in Computer Science from
the University of Amsterdam. He has published in ACM TOPLAS and several trade journals.

© Reasoning Inc 12

http://www.ics.hawaii.edu/%7Ejohnson/FTR
http://www.reasoning.com/

	INTRODUCTION	3
	Introduction
	Inspection Overview
	The limits of testing
	“Testing is never finished, only abandoned”

	Traditional inspection techniques
	Formal inspection
	Independent code reviews
	Automated software inspection: the new approach

	ASI Technology and methodology
	Code analysis techniques
	Types of defects found by ASI
	Methodology for ASI tools
	Integration into the development lifecycle

	Illuma: Reasoning's ASI service
	Illuma technology
	Illuma methodology

	Summary
	References
	About Reasoning
	About the Author

