
Efficient Testing with All-Pairs
Prepared for STAREast 2003 International Conference on Software Testing
Bernie Berger

If you’re a software tester who’s been in the field for a few years, you may have found yourself in one of
the following situations:

• You’re working as hard as you can to find bugs in a huge system and you can’t get to everything
within the deadline. You’ve already stumbled across some good bugs, and you think there are
more in there, but the deadline comes and the software is released. A week later, a major client
finds a serious problem with the new release and lets everyone know about it in an industry press
release. You begin thinking about what went wrong and how you can improve your testing
coverage.

• You’re on a job interview, and the person across the desk asks you how to test a product,
especially when there’s too much to do in so little time.

• Your management has an elementary understanding of software testing, and as a result, sets
unrealistic expectations for you to “test everything.” They demand 100% coverage, including
testing all possible inputs, from all possible interfaces, into all possible system paths, into all
possible outputs. You know these are ridiculous demands, and you start thinking about alternate
testing methods. (and/or alternate employment opportunities).

Well, I’m able to cite these examples because I’ve been in each of these situations myself. A few years
ago, I started thinking about the Coverage question of testing software – how can you “test everything”
without really testing everything? How can you test efficiently: to minimize testing efforts but maximize
testing results?

I found a method that I enjoy so much that I use it and talk about it as often as possible. I’ve seen this
technique referred to as “Pairwise Testing,” “Combinatorial Method,” and “Orthogonal Arrays” (actually,
each of these is similar but different), but I’ll use the term “All-Pairs.”

In All-Pairs test design, we are concerned with variables of a system, and the possible values each variable
could take. We will generate testcases by pairing values of different variables. Don’t re-read that last
sentence -- generating testcases using All-Pairs is easier than it sounds. It’s like learning a new card game
– at first you have to learn the object of the game, all the rules, and all the exceptions to the rules, and then
the tips and strategies. But after you’ve played a few times, it seems naturally easy to play. It’s the same
here. The best way to explain how it works is with an example, so keep reading…

Acknowledgements: This presentation draws upon material from various sources,
especially Lessons Learned in Software Testing by Kaner, Bach and Pettichord. Many
thanks to them for their time and advice. Thanks to the AETG team who developed the
all-pairs approach. Thanks to the reviewers of this paper for their insightful feedback:
Lawrence Nuanez, Michael Steinhart, Dmitry Shchelokov

Cartesian Products
A good starting point for a discussion about all-pairs is with Cartesian Products. A Cartesian product is a
scenario in which every unit of a group is matched with every unit of every other group, so that all
combinations of units are achieved across all groups.

For example, imagine the following simple software application: A one-screen GUI, with two dropdown
lists and an ‘OK’ button. List1 contains three values, ‘0’, ‘1’, and ‘2’; List2 contains two values, ‘10’, and
‘20’. The user selects one value from each list, and after clicking OK the product of the two values is
displayed on the screen. The variables and their values look like this:

List1 List2
0 10
1 20
2

How would you test this program? How many input combinations are there? How long will it take to test
all input combinations?

There are 3x2= 6 possible combinations. The 6 resulting combinations are a result of the Cartesian product
of the two inputs, and would look like this:

List1 List2
0 10
0 20
1 10
1 20
2 10
2 20

Each value of each variable is matched so that you have achieved all combinations. You can execute these
tests manually in less than two minutes. Let’s add a little more complexity; Version 2.0 of our program has
some new features:

List1 now contains integer values 0 through 9, and List2 was changed to an input Textbox, allowing all
integers between 1 and 99. Additionally, there are some new checkboxes. When checked, checkbox1
multiplies the product by -1 (makes it negative). Checkbox2 will multiply the product by itself (gives the
product’s square). The variables and values now look like this:

List Textbox Checkbox1
(-x)

Checkbox2
(x2)

0 1 On On
1 2 Off Off
2 3
3 4
4 …
5 96
6 97
7 98
8 99
9

Now I ask the same questions: How would you test this program? How many combinations are there?
How long will it take to test all combinations?

Now there are 99x10x2x2=3,960 possible valid input combinations. There are also a host of invalid ones.
(Note that the Textbox introduces a new concept – the possibility of invalid input. We will discuss that
soon.) What to do?

Don’t Use All Combinations
At the heart of all-pairs test design is the idea that you don’t need to achieve all combination testing. Let’s
think about all combinations for a minute, in terms of finding bugs. In the previous example, let’s say there
is a bug where the program freezes when List=0 and Checkbox1 is on. That is, the program gets confused
if it has to multiply zero by -1. That’s not an unrealistic possibility, right? Now, if you were testing all
combinations, how many test cases would fail because of this one bug?

99! That seems like a huge waste of effort, no? The fact is , the value in the Textbox is irrelevant to finding
this bug. You could have found this bug with only one testcase – one that pairs a List=0 with a
Checkbox=On – you don’t need the extra 98 cases to find it.

What are you saying when you’re testing all combinations? You’re saying that you’re looking for a bug
that will only appear when one particular set of values across all your variables fail. Let me say that again
in a different way: Each and every variable in the application has to be set to a particular value setting for
the bug to appear. If even one value was changed, you wouldn’t get that same bug. You’re looking for a
very specific set of conditions. Even in this nonsense calculator example, you have a 1:3,960 chance of
failure. Will there be a bug that occurs once (and only once) out of 3,960 distinct input combinations? (And
if by chance, there happens to be one, how low a priority do you think it would be? Picture the bug
report…If there were 20 variables in your application, a bug description would look something like: ”When
amount is 3, and security level is set to high, and color is green, and filter is on, and day is Tuesday, and,
and, and…<repeat 15 more times>… then the calculated output is incorrect”)

In reality, all combinations is usually overkill testing. I should say though, that in mission-critical or
safety-critical applications, all combinations might be a rational approach, such as pharmaceuticals or
military defense systems, but that discussion is outside our scope.

Let’s not be concerned with attempting to test combinations of all variables. Most bugs are found when
only two variable values conflict, not when all conflict at the same time. In a recent NIST analysis of
medical software device failures, only three of 109 failure reports indicated that more than two conditions
were required to cause the failure (Wallace 2000). This is the main idea of all-pairs. It is more likely that
you will find your bugs as a result of two values conflicting. It is far less likely that you need ALL
variables in a particular value formation. Don’t test all combinations. Test all-pairs.

OK, so that’s the theory. How do you put it into practice? How do you figure out what pairs of variable
values you have, and how do you fit them into actionable test scenarios?

Again, this is most easily explained with an example.

All-Pairs Working Example
First, figure out what your parameters (variables) are, and what each variable’s possible values could be.
Organize this information in a spreadsheet.

Next, simplify your values. Group them. Use boundaries. For example, in the Textbox, instead of listing
every valid value between 1 and 99, choose a smart representative sample. (As a rule of thumb, unless you
have other specific information, use min-1, min, min+1, max-1, max, max+1.) [For more information
about this technique, see the material on Equivalence Class Partitioning in Testing Computer Software]

In our example, the user has more freedom to enter invalid choices in the Textbox than in the dropdown
list. Realize that when input is non-discrete, you can still group it into values. For example, value
categories for freeform text might be: all alpha chars, all numeric chars, uppercase, lowercase, words in
single quotes, keywords, etc.

In our example, to keep it simple for now, let’s reduce the 99 valid values plus the infinite number of
invalid values down to three: any valid integer, any invalid integer, and any alpha chars (which would
be invalid).

Let’s also reduce the 10 values in the dropdown list to two: 0, and any other value.
Now our variables and values look like this:

List Textbox Checkbox1
(-x)

Checkbox2
(x2)

0 Valid int On On
Any other Invalid int Off Off

Alpha

Next, put your variables across the top header row in a table. Order your variables so that the one with the
most number of values is first and the least is last. Here, we put Textbox first because it has 3 values. The
other variables each have 2 values.

Textbox (3) List (2) Negative (2) Square (2)

Now we will start filling in the table. Each row of the table will represent a unique test case/scenario. We
will fill the table column by column. Look at how many values there are in column 2. Here, we see that the
List column has 2 values. That’s how many times you will need to insert the values of the first column,
Textbox. So we begin:

Textbox (3) List (2) Negative (2) Square (2)
Valid integer
Valid integer

Invalid Integer
Invalid Integer

Alpha
Alpha

We inserted six rows. The three values of Textbox, each repeated twice. Also notice that we skipped a row
between each set of values. This is important – we will get to that soon.

Now, we fill in column 2. For each set of values in column 1, we will put both values of column 2 like so:

Textbox (3) List (2) Negative (2) Square (2)
Valid integer 0
Valid integer Other

Invalid Integer 0
Invalid Integer Other

Alpha 0
Alpha Other

So far, so good. We have paired values across our two first variables. We can do a quick check… Valid
and 0, Valid and Other. Invalid and 0, Invalid and Other. Alpha and 0, Alpha and Other. It’s all good.

Let’s continue on to the third variable. Column three is the checkbox that determines whether you want to
multiply the product by -1. There are two values, on and off. Let’s put in the ons and offs in column 3 and
see what happens.

Textbox (3) List (2) Negative (2) Square (2)
Valid integer 0 On
Valid integer Other Off

Invalid Integer 0 On
Invalid Integer Other Off

Alpha 0 On
Alpha Other Off

Let’s check to make sure we have all our pairs between column 3 and column 2. We have a 0 and On, but
wait – there’s no 0 and Off. We have an Other and Off, but there’s no Other and On. Let’s swap around
the values in the second set in the third column:

Textbox (3) List (2) Negative (2) Square (2)
Valid integer 0 On
Valid integer Other Off

Invalid Integer 0 Off
Invalid Integer Other On

Alpha 0 On
Alpha Other Off

There. Much better. We have a 0/On, 0/Off, Other/On, and Other/Off. Notice that the last set on and off
are arbitrary – we already have our pairs – and we don’t care if the order is on/off or off/on.

Let’s continue to the fourth column. This is the checkbox that multiplies the product by itself. There are
also two settings, checked and unchecked. (I will call the values of this checkbox checked and unchecked
so that they’re different from the on and off in column 3, just for the example. You can have values of
different variables called the same thing). We have to enter values in such a way that we get all our pairs.
Let’s give it a try:

Textbox (3) List (2) Negative (2) Square (2)
Valid integer 0 On Checked
Valid integer Other Off Unchecked

Invalid Integer 0 Off Checked
Invalid Integer Other On Unchecked

Alpha 0 On Unchecked
Alpha Other Off Checked

Once again, let’s check our pairs. We have a 0/Checked and 0/Unchecked. We have Other/Checked and
Other/Unchecked. Good, now let’s take a look at columns 3 and 4. We have On/Checked and
On/Unchecked, and Off/Checked and Off/Unchecked. Not bad.

See, we fit every pair of values into six cases. If we were testing all combs, we would have 3x2x2x2=24.
And if you consider that we reduced 99 to 3 in the Textbox, and 10 down to two in the dropdown list, that’s
an even bigger savings.

Remember when I said that skipping lines is important? Well, it is. Let’s say Version 3.0 of our multiplier
adds two more checkboxes. Checkbox3 will give the factorial value of the output, and Checkbox4 will
convert the output into Hexadecimal notation. So we have to add two more columns to our table and enter
our values. Let’s continue with Checkbox3 in Column 5:

Textbox (3) List (2) Negative (2) Square (2) Factorial (2) Hex (2)
Valid integer 0 On Checked Yes
Valid integer Other Off Unchecked No

Invalid Integer 0 Off Checked No
Invalid Integer Other On Unchecked Yes

Alpha 0 On Unchecked No
Alpha Other Off Checked Yes

Let’s make sure each column has at least one pair with our newly added fifth column. Looks like we did
OK: Column 2 is OK: (0/Yes 0/No, Other/Yes, Other/No), Column 3 is OK: (On/Yes, On/No, Off/Yes,
Off/No), and Column 4 is OK: (Checked/Yes, Checked/No, Unchecked/Yes, Unchecked/No). We’re
golden. Notice that the on off sequence in the last set in the third column is no longer arbitrary as it was
when we had only three columns filled in. We need it in that order now for our new value pairs.

Here we go one more time with the last column:

Textbox (3) List (2) Negative (2) Square (2) Factorial (2) Hex (2)
Valid integer 0 On Checked Yes Dec
Valid integer Other Off Unchecked No Hex

Invalid Integer 0 Off Checked No Hex
Invalid Integer Other On Unchecked Yes Dec

Alpha 0 On Unchecked No Dec
Alpha Other Off Checked Yes Hex

And let’s see how we did:
Column 2 is OK. We have a 0/Dec 0/Hex Other/Dec Other/Hex.
Column 3 is problematic: We do have an On/Dec and Off/Hex, but we’re missing On/Hex and Off/Dec
pairs.
Column 4 is OK: Checked/Dec, Checked/Hex, Unchecked/Dec, Unchecked/Hex
Column 5 is OK: We have a Yes/Dec, Yes/Hex, No/Dec, and No/Hex.

This time, we can’t fit in our missing pairs (On/Hex and Off/Dec) by swapping around values. If we did,
then other pairs would get out of whack. Instead, we simply add two more testcases that contain these
pairs. Hence, the blank rows.

Textbox (3) List (2) Negative (2) Square (2) Factorial (2) Hex (2)
Valid integer 0 On Checked Yes Dec
Valid integer Other Off Unchecked No Hex

On Hex
Invalid Integer 0 Off Checked No Hex
Invalid Integer Other On Unchecked Yes Dec

Off Dec
Alpha 0 On Unchecked No Dec
Alpha Other Off Checked Yes Hex

The other variable values are purely arbitrary. They need to be filled in with some value, but we don’t care
which value, because we already have all our pairs. Go ahead and fill in the empty cells as you desire, and
there you have it -- all-pairs in eight cases instead of all combinations in 96!

Textbox (3) List (2) Negative (2) Square (2) Factorial (2) Hex (2)
Valid integer 0 On Checked Yes Dec
Valid integer Other Off Unchecked No Hex
Valid integer Other On Unchecked No Hex
Invalid Integer 0 Off Checked No Hex
Invalid Integer Other On Unchecked Yes Dec
Invalid Integer Other Off Unchecked Yes Dec
Alpha 0 On Unchecked No Dec
Alpha Other Off Checked Yes Hex

I bet you’re saying, this is really great, but do I have to go through this lengthy exercise with all this
checking and swapping whenever I need an all-pairs analysis? This example is not nearly as complicated
as the project I’m testing back home. It will take forever to figure it out with all my variables and values.
Is there a way to automate these calculations? If only there were a free downloadable script that calculated
all-pair combinations…

Introducing James Bach’s All-Pairs Tool
Fortunately for you, James Bach has already developed an all-pairs calculator. And because James is such a
nice guy, it’s free to download from his website at www.satisfice.com. He even gives you an instruction
manual, a sample example, and the Perl source code. Let’s take a quick look at it, and this time, let’s use a
real-life example.

You’re testing an online mortgage application system. Using a web browser, users surf to the site and enter
personal data into a series of forms. The system processes the data and, based on the data entered and the
business logic programmed into the application, the system tells users what kind of mortgage products they
qualify for and what their interest rate will be. Here’s what the variable values look like:

R
eg

io
n1

T
ie

r2

P
ro

pe
rt

y

C
re

di
t3

R
es

id
en

ce
4

L
T

V
5

N
IV

6

N
A

V
7

R
ef

in
an

ce

C
C

8

In
tr

o
R

at
e9

E
m

p.
 D

10

NY L 1 fam A+ Pri 80% Yes Yes Yes Cust Yes Yes
NJ M 2 fam A Vac 90% No No No Bank No No
FL H 3 fam A- Inv 100%
TX H+1 4 fam B
CA H+2 Coop <B
DC H+3 Condo
Other

There are 7x6x6x5x3x3x2x2x2x2x2x2 = 725,760 valid combinations. All-pairs does it in 50. Here’s what
to do:

1. Download and unzip ALLPAIRS from www.saticefice.com
2. Organize your variable and value matrix the way we did here and save it in tab-delimited text

format. You can use Microsoft Excel and save as a .txt file. Remember to keep the formatting
simple, and don’t use spaces.

3. From a DOS command line, call the ALLPAIRS executable with the name of the .txt file as an
argument. Redirect the output to an output file. For example,

ALLPAIRS.EXE MORTGAGE_IN.TXT > MORTGAGE_OUT.XLS

That’s all there is to it.

Additional Considerations
Despite its ease of use, don’t think that this tool is the silver bullet that will magically fix all your testing
problems. You still need to think about how and when using all-pairs as a test technique is appropriate.
We already discussed briefly that it may not be an appropriate method for all situations. Here are some
more points to consider:

1 Location of property by US State
2 Amount borrowed.
3 Credit rating of applicant
4 Type of residence: Primary, Vacation, Investment
5 Loan to Value: amount of loan as percentage of value of property
6 No Income Verification
7 No Asset Verification
8 Closing Cost paid by Bank or Customer
9 Lower rate for first year of loan, followed by higher rate for subsequent years
10 Applicant is an employee of bank and gets a discount

Don’t be tempted to find all-pairs of all variables, just because you can.
Sometimes, a particular variable will or will not exist, depending on the value of another variable. For
example, let’s say the same system that processes mortgages will also handle two other home finance
products: home equity loans, and home equity lines of credit. There might be different business rules for
processing line-of-credit applications. Maybe the different products are not offered in the same group of
Regions, or perhaps there are different categories for LTV among the different home finance products.

It wouldn’t make sense to add a “product” variable with values “Standard Mortgage”, “Home Equity Loan”
and “Line of Credit” into our all-pairs matrix because some of the resulting pairs (and therefore, testcases)
would be undefined. If you did, you might generate a testcase that pairs a line-of-credit application with
values that are not available for that product. This is different than negative testing, where you would be
trying an option that the system doesn’t expect. Here, you couldn’t try that option at all because it doesn’t
exist. You would be creating buggy testcases.

One solution is to create separate all-pairs matrixes for the individual products. In this example, you can
create individual all-pairs matrixes because the business rules are so different for each Home Equity
product.

You won’t find all your bugs by using this technique exclusively.
Remember, all-pairs only tests to see whether any two variables conflict, not if three or more conflict.
Also, if you forget to include a variable, or you decide to exclude one from the matrix, its values won’t be
meshed with the rest of the variables. Lastly, reducing the number of values per variable (as we did with
the Textbox in the first example) could cause an important pair to be missed.

In Lessons Learned in Software Testing, Kaner, Bach, and Pettichord suggest to add additional cases,
especially if you know of a specific combination that is widely used or likely to be troublesome.
Additionally, try to introduce the all-pairs technique to your current test process gently. If your current
testing process isn’t awful, then don’t end it suddenly and replace it only with All-Pairs. All-Pairs is a great
method to add to your testing toolbox.

Don’t limit use of all-pairs to input variables
Throughout this presentation, we talked about variables as input to a system. Remember, variables can also
mean test environments, paths through a system, and outputs. A common usage of all-pairs with non-input
variables is in setting up test environments for Internet applications. Often, web apps need to be tested on a
host of OS/Browser combinations. Nguyen illustrates this with an all-pairs example in Testing Applications
on the Web.

Conclusion
Rooted in mathematical theory, the all-pairs technique is a thoughtful method when test planning.
Download the all-pairs calculator and try it out. Using it, you can quickly generate test cases that have a
good chance of finding bugs, instead of mindlessly copying and pasting text into testcase templates. The
next time someone asks you to test “everything,” or you’re at an interview and you want to talk about test
efficiency, remember this presentation and tell them about the benefits of the all-pairs approach.

References

Lessons Learned in Software Testing, Kaner, Bach, Pettichord

Testing Applications on the Web, Nguyen

Testing Computer Software, Kaner, Nguyen, Falk

“The Combinatorial Design Approach to Automatic Test Generation”, Cohen, Dalal, Parelius, and Patton

“The AETG System: An Approach to Testing Based on Combinatorial Design” Cohen, Dalal, Fredman,
Patton

“Orthogonally Speaking”, Dustin, STQE Magazine 2001

“Orthogonal Array Testing Strategy (OATS) Technique”, Harrell

“Converting System Failure Histories into Future Win Situations”, Wallace and Kuhn

“ALLPAIRS”, Bach

“A Dimensionality Model Approach to Testing and Imporving Software Robustness”, Koopman, Pan, and
Siewiorek

