Emergency Fix – Practical Testing Approach

 by Sharath R Bhat

TABLE OF CONTENTS
3Introduction

31.
Negotiation

42.
Collaboration

43.
Implementation

44.
Testing

55.
Co-ordination

56.
Tools

5Conclusion

Introduction
We often come across situation in real world wherein Software/Release Package is delivered to Testing Team towards the end of Emergency-Fix/Release schedules. Project Stakeholders will be anticipating the high-quality software to be shipped without breach in project schedule. In such cases, the traditional SDLC models such as Waterfall Model, V-Model etc wouldn’t work due to the hierarchal form for development & testing phases. The Testing approach outlined here would provide practical way of bringing such kind of situation under control & eventually accomplish the schedule without quality being compromised.
The following flowchart depicts a ‘Practical Technique’ for software development
[image: image1.png]

The salient phases of this Technique are:
· Negotiations

· Collaborations

· Implementation

· Testing
· Co-ordination
Each of these phase are elaborated in detail in sections below:
1. Negotiation
The key points to be considered in ‘Negotiation’ phase:

· Analyze the Issues & derive testing effort using ball-park estimation technique.
· Communicate Testing Effort to Management & Project Stakeholders with justification.
· Analyze the areas impacted due to requirement & probability of number of scenario to be covered should be communicated to stakeholders.
· Scope of testing should be communicated to stakeholders when fix is likely to impact many screens / component.
2. Collaboration

Mistakes are bound to happen during such situation when a team is trying to fix the problem in application. Such mistakes will eventually lead to impact on other functionalities of application. As a consequence, it will lead to defective piece of software.
The key points to be considered during ‘Collaboration’ phase in order to mitigate such risks:
· Discussion between development & testing team regarding issue & possible solution.
· Scenario’s to test condition of direct requirement (Issue being fixed) in component/screen.
· Scenario’s to test condition for surrounding areas of code which got impacted due to this change.

· Scenario’s to test condition wherein component under test interact with other components of the system.
· Re-test Critical/Major defects of components which were fixed during formal phase of testing.

· Regression testing of major functionality of components.

· Negative scenario’s.

· Share the scenario’s with development team before they begin implementation of fix.
3. Implementation
In this phase, the respective team carries out Development & Testing Activities.

The key points to be considered during ‘Implementation’ phase:

· Preparation of test cases.
· Prioritize the test cases (1-High, 2-Medium, and 3-Low).
4. Testing
The key points to be considered during ‘Testing’ phase:

· Execute Test scenario’s discussed during collaboration phase & find results which are deviated from expected one’s.
· Execute Test scenario’s which were not noticed during collaboration phase. With this technique, amount of test coverage can be maximized even during short span of time.

5. Co-ordination

· Defects found during testing should be communicated to development team as soon as possible.
· Analyze the root cause of problem & execute alternative path to re-produce the defect.

· Quick discussion between the teams to analyze other scenario’s which might be impacted due to fix.
6. Tools
Tool such as ‘Beyond Comparator’ can also assist during such delivery phases. This tool has ability to convert files such as java, jsp, html etc (except binary) into text files. Later the version of file impacted due to fix is compared with pre-release version of same file. The tool highlights difference in two files & test engineer can analyze the code change areas & ensure that Black Box Testing technique has indeed covered functional changes.
Conclusion

The above Technique will foster the collaboration among team members and they will be open to opinions, criticism, suggestions and eventually can handle stringent delivery timeline without being panic and eventually team will deliver quality product. This technique cannot replace any existing SDLC models such as waterfall, V-Model etc which is proven & tested over period of time but would certainly act as guidelines for Testing Team.

