
Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 1

Efficiency and Effectiveness Measures
To Help Guide the Business of Software Testing

Abstract
This paper is based on actual Hewlett Packard work experience. The results of the “Process
Metrics” team will be discussed. The “Process Metrics” team was part of a special 100 day effort
to identify ways to improve the current Software Testing processes, infrastructure, and
measurement. The specific focus of the “Process Metrics” team was to identify and define
efficiency and effectiveness metrics for the Boise LaserJet Test Lab. The “Process Metrics” team
consisted of five members who contributed approximately 10-20 hours per week for a three
month period. This is a total of approximately 900 engineering hours (15 hours p/week * 5
engineers * 12 weeks). This paper will explain what metrics were chosen and what process was
used to select the metrics. This paper will enable other Software Testing organizations to
examine their current metrics solution and adjust it to better meet the needs of Software Testing.

Introduction
Until recent years, many Software Testing organizations have often been services funded by
Software Development organizations. As a result, the measurements reported by Software
Testing organizations have often been tailored to fit the needs of Software Development.
Although it is important to measure the quality of the product under development, it is equally
important to measure the effectiveness and efficiency of Software Testing itself as an activity –
not a service.

Specifically, the measurements described in this paper first answers the question of whether
Software Testing is "doing the right thing" (effectiveness). Once there is assurance and
quantification of correct testing, metrics should be developed that determine whether or not
Software Testing "does the thing right" (efficiency).

By measuring effectiveness and efficiency, a Software Testing organization can better
communicate its own importance using factual information. This enables Software Testing
organizations to break free from the misconception that Software Testing measurement should
concentrate on issues important to the Software Development community.

1.0 Background - Why Metrics Specific To SW Testing Are Essential
Tom DeMarco, a consultant and metrics expert, has said “if you don’t measure, then you’re left
with only one reason to believe you are still in control: hysterical optimism”.1 The effort and
dollars put into Software Testing today demand that professional testers rely on more than
“hysterical optimism” to manage the business of Software Testing.

1.1 New Development Costs
The data in Figure 1-1 represents the amount of time attributed in a total of 132 Hewlett Packard
software projects involved in new development. “The data is further separated into three
categories that are generally accepted in HP: firmware, systems, and applications software.
Firmware is software that runs in ROM (Read Only Memory) or RAM (Random Access
Memory) under control of a microprocessor. Systems software executes from the memory of one
or more networked computers. Applications software operates on top of systems software in one
or more components to solve specific user problems… the resulting development activity
percentages are
- Requirements/Specifications – 18%

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 2

- Design – 19%
- Implementation – 34%, and
- Test – 29%”2
This data gives some indication of the amount of effort attributed to the Test phase when
developing new software.

(FIGURE 1-1)2

1.2 Software Testing Costs Compared to Total Development Costs
Compared to the data in Figure 1-1, which represents new software development costs at Hewlett
Packard, the Software Development/Maintenance Management Model described by Robert Grady
in Figure 1-2 takes into account many different types of software projects. The model shows
“Work”, “Rework”, and “Knowledge Recovery” as major components exhibited throughout the
software lifecycle. The model is based on extensive data gathered for many years from Hewlett
Packard and other industry software projects. In Figure 1-2, “Work” is the effort necessary to
create the software. “Rework” is comprised of development, defect fixing, and enhancement
implementation activities. “Knowledge Recovery” is described as the effort involved in learning
and understanding the software system. One aspect of “Knowledge Recovery” is the amount of
time needed to bring new people working on the software up to speed. Factoring in each aspect of
this comprehensive model provides a complete picture of software that suggests the minimum
amount of effort focused on testing to be 12%. This twelve percent, however, does not include
the effort allocated to software testing “Rework” and “Knowledge Recovery”. If these factors are
added to the twelve percent, software testing represents a significant portion of the overall cost of
software development and maintenance.

Systems
(48 Projects)

REQMTS/SPECIF. 14.0%

DESIGN 19.0%

IMPLEMENT-

TEST 37.0%

Firmware
(31 Projects)

REQMTS/SPECIF. 15.0%

DESIGN 21.0%

IMPLEMENTATION 39.0%TEST 25.0%

Applications
(53 Projects)

REQMTS/SPECIF. 22.0%
DESIGN 16.0%

IMPLEMENTATION 34.0%
TEST 28.0%

 ATION 30.0%

Percent Engineering Hours by Phase

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 3

FIGURE 1-23

As with any other business critical activity, incremental, sustained improvements in software
testing products and process will lead significant overall benefits. Successfully measuring
Software Testing can help with these improvement activities.

1.3 Maturity Model for Software Testing Measurement
One way to evaluate and incrementally improve a Software Testing metrics program is to apply a
maturity model. Test Process improvement (TPI) is an example of a software testing maturity
model consisting of 19 key areas, 4 levels, and checkpoints within each level for each area4. In
the model, each key area is designated a particular level based on whether or not particular
cumulative checkpoints are met. Only one of the key areas in the model will be discussed. This
is the key area called “Metrics”. For the purposes of this paper, the levels within the “Metrics”
key area will be described with terms comparable to other maturity models. The four levels that
exist within the “Metrics” key area are:

I) Repeatable – At this first level, the emphasis is on product metrics. Test project input data
such as “resources used (hours), performed activities (hours and lead time), and the
scale/complexity of the system under test”, is collected. Project output data relating to test
products and progress is also accumulated.
II) Defined – Emphasis at this level in on the testing process. In addition to the “Repeatable”
checkpoints being met, the following metrics are described in the checkpoints; “defect location
effectiveness (% defects found in test in relation to total, which tests should have found the

Rework

Work

Requirements/
Specifications

DesignImplementationTest

Key model assumptions
generally based on reported
measurements, not always HP:

1. Maintenance (defect fixing:
enhancements):development

= (20:35):45

2. 50% of maintenance =
knowledge recovery

3. Rework= 33% of development
+ 50% of maintenance defect

A Management Model of Major Software
Development/Maintenance Cost Components

(24%) (17%) (19%) (12%)

17%

9%

5%

4. Rework adjusted to assign
costs to origins of defects

fixing + (33% * 50%) of
enhancements

Knowledge Recovery

(28%)

Knowledge
Recovery

7%

8%

14%

12%

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 4

defect(s)), defect location efficiency (defects found per hour of test), level of test coverage(depth
of testing), defects on testware (% of defects attributed to testing as compared to total), and
perception of quality (through reviews and interviews with users, testers and other people
involved).
III) Managed – The focus at this level is on system metrics. The model describes this level as
“The statistics mentioned above (meaning at the Repeatable and Defined levels) are collected for
new development projects and for maintenance on operational systems. The statistics are used for
to evaluate the effectiveness and efficiency of the test process.” It appears that the only
difference between this TPI level and the previous one is the application of the previous two
levels at the system, as compared to the software, level.
IV) Optimized - The concentration at this level is on organization metrics. For this level, the TPI
model states “Throughout the organisation comparable statistics are collected for the data
mentioned before. The statistics are used to evaluate the effectiveness and efficiency of separate
test processes, in order to optimise the generic test method and future test processes.”

The TPI model is useful in the right context. Namely, the types of metrics mentioned at the
repeatable and defined level are areas of emphasis that must be considered. What the TPI model
lacks is application to the needs of specific testing organizations. The “optimized” level mentions
organizations but still lacks exactness. For example, at the defined level, “level of test coverage”
is mentioned. What is not discussed is the types of test coverage that are appropriate. Is it branch
coverage, call pair coverage, profiler coverage, requirements coverage, or use case coverage that
should be measured? These types of specific questions, corresponding to the metrics mentioned
at the repeatable and defined levels, are only answered by examining the particular measurement
needs of an organization. The paper will now examine how metrics specific to an organization
are determined and linked back to the TPI model.

2.0 Gathering Requirements for SW Testing Metrics
2.1 Start with GQM
The Goal Question Metric (GQM) process, created by Victor Basili and his colleagues at the
University of Maryland, is a good place to begin targeting the specific measurement needs of an
organization.5 The main emphasis of GQM is goal directed measurement. An organization
usually starts with generic goals that must be refined. For example, “Reduce the number of
failures found on a project”. This is certainly a goal, but is it well enough refined? One
technique to further refine goals, making them specific enough that they are applicable to the
direction of the organization, is the SMART technique6. This consists of five parts:

Specific – Is the goal specific? Even for developers and testers working on the project, a
percentage and timeframe should quantify the words “reduce” and “failures”.
Measurable – Can the goal be gauged in comparison to other data? In this example, the answer
appears to be “yes”. What is lacking is why this quantity is being measured? What decisions are
being made? What conclusions can be drawn? It is important to consider questions like these
when refining goals.
Attainable – Is there agreement that this goal is achievable? Has consensus from the rest of the
team been obtained? Are resources allocated to work on the goal?
Relevant – Is the goal impractical or imprecise? Is the goal scaled in the proper perspective? Is
the goal within the scope of what you are responsible for and expected to accomplish?
Time-limited – Does the goal have a specific start and end date? Is there time in the project
schedule allocated toward collecting data and tracking progress toward the goal? In the example
above, this is not the case.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 5

In addition to “SMART”, every valid goal should represent a “stretch”. In other words,
achievement of the goal is not something that will be accomplished without effort and focus.
When the organization reaches the goal, there will be agreement that improvement has definitely
occurred.

Continuing with the example, a refined goal statement is “Find an additional 20% of critical
failures (severity level 3&4), as compared to the last project, from now up until one month prior
to manufacturing release.” This refined goal meets the “SMART” criteria and represents a
“stretch” for the organization.

The next step in the Goal-Question-Metric process is to begin asking questions. The idea is to
generate questions about the goal that will lead to specific metrics. A few questions to consider
are:
- Is this project similar enough to the previous project that this type of comparison makes

sense?
- What are the causes of critical defects?
- What data about duration testing indicates that 20% more critical failures can be found using

these techniques?
- In the last product, what was the percentage of “critical” failures found, for the corresponding

time period, as compared to the total?
- How many critical defects are expected for the same period on the next project?
- What duration test suite is appropriate for this project?
- Does duration testing enable finding a higher percentage of critical defects than regular

testing?

Once a list of valid questions are created, measurements are generated. When considering
metrics, it is often helpful to list the raw data that must be collected. This raw data is sometimes
referred to as “primitive metrics”. In this example, some important raw data is:
- Number of critical defects with a severity level of three and four.
- Time in duration testing.
- Total number of defects found in duration testing time period.
- Number of critical defects found on the last project for the corresponding time period.
- Number of total defects on last project for the corresponding time period.

Once the raw data is defined, more complex, or “computed” metrics are generated based on
combinations of primitive metrics. Deriving measurements from raw data and translating that
data into something useful to managers and/or developers is essential in tracking real progress
towards a goal. Important computed metrics in this example are:
- Number of critical failures found in duration testing time period / Total number of

failures found in duration testing time period.
- Number of critical failures (severity 3&4) found in corresponding time period on previous

project /
Total number of failures found in corresponding time period on previous project.

Once initial measurements are defined using the GQM paradigm, it is essential to verify that the
metrics align with the departments(teams) that make up the organization.

2.2 Collect Input from Affected Teams
Many GQM efforts consist of following the described GQM method with intact work teams. On
the Process Metrics team, however, we were asked to define metrics for an entire testing

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 6

organization. As a result, some members of the Process Metrics team engaged in GQM for the
organization. At the same time, other members of the team worked on determining what current
metrics are being used by teams and what metrics are needed in the future. The following matrix
is an example of how this type of data was collected from the System Testing group.

Owner Process / Activity

Being Measured
Metric, Effectiveness/
Efficiency,
In Place Now /
Planned for Future

Customer(s), Goals,
Decisions Made

System Test Lead Install Testing Number Defects Found,
Effectiveness Measure,
In Place Now

R&D / Marketing, Find
defects with install
testing, Adjust testing
based defect finding
results

System Test Manager Overall System Testing
Process

Number of field defects
prevented,
Effectiveness, Planned
for Future

Warranty / Customer
Center / R&D,
Marketing, Prevent
more defects from
getting into the hands
of customers, increase
the intensity of System
Testing

After data was collected from each test department, the results were examined to make sure the
metrics outlined by specific departments aligned with GQM results.

2.3 Six Prioritized Measurements
GQM results, completed surveys from testing teams within the organization, and prioritized
voting led to the following measurements:

Metric Importance Timeframe Difficulty TPI

Mapping
Tests That Find
Defects

High Short Term Low/Medium II

Defects Found Per
Week

High Short Term Low II

Testing Coverage High Medium/Long Term Medium/High II

Testing Benefit vs.
Cost

High Short/Medium Term Medium/High I

Automation Count Medium/High Medium Term Medium II

Tests Configured,
Executed per Unit of
Time

Low/Medium Medium Term Medium I

It should be noted that the TPI mapping of the metric is not the primary consideration as to
whether the measurement is of high importance. Rather, the TPI mapping helps determine the
level of maturity of the metrics program. When assigning importance, there are other
organizational considerations in addition to TPI. Each metric’s importance is based on three
attributes; the timeframe in which the metric can be implemented, the relative difficulty of
establishing the measurement, and its TPI mapping. Based on each of these attributes, the Process
Metrics team decided on the importance of each metric. The recommended focus is on High and
Medium importance metrics first. At this point, six metrics have been identified. What is not
known are the details of each metric. The necessary detail will be described in the design of each
metric.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 7

3.0 Designing The Metrics
The GQM process, gathering input from other teams, and prioritizing the metrics is roughly
equivalent to metrics requirements gathering, with a hint of high level design when considering
primitive vs. computed metrics. The next step in the lifecycle is detailed design. For each metric,
a template was completed. For the purposes of this paper, the important parts of the template are
represented in the following matrices.

3.1 Measurement Design Matrices

3.1.1 Measurement Basis (GQM)
Goal Questions Metric
By end of FY 1999, determine the ratio of
“clean” to “dirty” tests. Reduce execution
frequency of “dirty” tests that are no
longer finding critical defects.

- What is the definition of a “dirty” test?
- If a test corresponds to one or more
requirements, is it “clean”?
- What is the definition of each level of
criticality?

Tests That Find Defects

By the end of FY 1999, illustrate the
importance and value of Software Test
Section activities in the eyes of customers.

- What types of defects is the Software
Test Section finding?
- How many and what types of defects
are being found by organizations outside
the Software Test Section?
- What is valuable to customers?

Defects Found Per Week

By the end of FY 2000, improve the
thoroughness of testing at testing levels
that are the responsibility of the Software
Test Section.

- What types of coverage are applicable at
different test levels?
– How is coverage data gathered?
– What coverage data exists, what does
not?

Testing Coverage

By end of FY 1999, improve the ability to
communicate the value of testing to
customers by reporting specific benefits
vs. the costs of testing.

- What are the key components of cost
that should be measured?
– How does the customer measure the
value of testing (requirements tested,
defects found, etc.)?
– How much, on average, is spent for
testing on a particular project?

Testing Benefit vs. Cost

By end of FY 2000, improve the ability to
repeat tests thereby increasing the level of
accuracy in predicting and designing
project testing schedules.

- What criteria must be met to automate a
test?
– What are the levels of automation?

Automation Count

By end of FY 1999, improve schedule
planning by gaining a better
understanding of how much effort it takes
to accomplish testing tasks.

- What are appropriate units of time for
this measurement?
- What are the current test phase
activities? What are the ideal test phase
activities?

Tests Configured,
Executed per Unit of Time

3.1.2 Definition
Metric
Description

Calculation Formula What it is

What it’s not Success & Failure Indicators

Tests That Find
Defects A list of
tests that find
defects and a list
of tests that do
not.

Count the number of tests in the defect/test
management system that have found
defects at three levels of criticality (High,
Medium, and Low).

A way to prioritize
tests based on
historical
performance.

An absolute
measure of a
test’s
effectiveness.

Evaluate “Dirty” tests that aren’t
finding defects as potential
candidates for reduced execution
frequency. “Clean” tests should
not be judged solely on this
metric, other indicators are
necessary.

Defects Found
Per Week
The number of
product defects
found per week
by members of
the LSG
Software Test
Section.

Count the number of defects found each
week by Software Test Section Tests per
criticality categories (ex. High, medium,
and low). A week is defined as a calendar
week wherein test execution has occurred.

One indicator of test
efficiency.

This metric
should NOT be
used by itself to
determine the
efficiency of
testing efforts.

Once historical data is available,
similar projects “may” be
compared.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 8

Metric
Description

Calculation Formula What it is

What it’s not Success & Failure Indicators

Testing
Coverage
A measure of the
thoroughness
(depth) of
testing.

1st Phase Only
High Level Component Testing
Rqmts. Tested / Total # Rqmts.
System Testing
Use Cases Tested / Total # Use Cases
Top Tier Configs Tested / Total # Top Tier
Configs

Several measures
of the completeness
of testing.

An indication of
whether or not
defects are being
found.

Based on definitions in testing
model.

Testing Benefit
vs. Cost
The number of
requirements
tested or defects
found, by
criticality, per
dollar spent on
testing resources
plus effort.

Requirements Tested or Defects Found per
month /
Dollar cost per month of:
1. Resources – Non labor expenses,
contract labor, occupancy costs, capital
depreciation, categorized or apportioned to
lowest level project:activity
PLUS
2. Effort – Labor for each test lab
individual categorized / apportioned to
lowest. Level project:activity

A measurement of
the value of testing
as compared to the
resources and effort
spent.

Intended to be
precise to the
$1.00.
Especially in the
area of effort,
costs will be
estimated based
in information
entered by the
worker.

There is no inherent numerical
criteria for cost.

Automation
Count
The number of
testing activities
that meet
particular
automation
criteria.

Count of tests in each of the following
categories, using supplied definitions,
standards, and “engineering judgement”:
0: not automated
1: partially automated
2: substantially or fully automated
NA: Not (applicable/unable to automate)

A measure of
opportunity in the
test lab to be
realized by
automation of our
test activities

A standalone
measure; it is
probably best
combined with
the Cost measure
to evaluate
opportunities.

All activities classified either
NA or Automated.

Tests
Configured,
Executed per
Unit of Time
The number of
tests configured,
executed, per
unit of time
(month, week,
hour).

Number of tests configured, executed /
Unit of Time (month, week, hour)

An indicator of
testing efficiency.

A way to
measure
individual
performance.

This is more of an indicator to
let people know how testing
resource is spent. It is difficult
to say that you are successful or
not based on activities
accomplished per hour.

3.1.3 Assumptions & Dependencies
Metric Assumptions Dependencies
Tests That Find Defects 1. The designation of a test as “clean” or

“dirty” is a new concept in this
organization.

2. There is currently no distinction in the
defect management system between a
“Failure” and a “Fault”.

Internal
- Common criticality categories.
– Recording of necessary defect/test data.
– Way to link defects to tests.
– Common process for defect management.
- Getting agreement that certain tests should be
run less frequently.
External
- “Common” defect management.

Defects Found Per Week 1. The quality of software under test may
affect this metric more than the rigor put
into testing.

Internal
- Common criticality categories
- Way to link defects to Test Lab Tests.
External
- Common process for defect management.

Testing Coverage 1. All the necessary tools may not be in place
to measure coverage. Additional tools may
need to be investigated and purchased.

2. Measuring coverage requires significant
effort and resource.

Internal
- Availability of resources.
- Generation of accurate data.
External
- Many types of coverage measurements require
in-depth knowledge of the product source code
and integral partnership with R&D organization
developers.

Testing Benefit vs. Cost 1. There is not one uniform method for
gathering effort cost information among
different departments.

Internal
1. This depends on practices, presumably
different right now, in use by departments.
2. Will require “multiplier” or other method (see
proposal) to convert effort to $.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 9

Metric Assumptions Dependencies
3. To capture all costs, some method of defining
and apportioning “overhead” will be needed.
4. There are currently few methods to
differentiate between defects found in testing
and defects found in development or some other
way.
5. There is currently no linkage between the
Requirements Management and Test
Management systems.
External

Automation count 1. Interviewing and engineering judgement is
necessary in determining the level of
automation for tests.

2. Each department may have an overall
different level of automation.

Internal
Depends on owners of automation projects to
report their results.

External

Tests Configured, Executed per Unit
of Time

1. Hours are being tracked per activity. This
assumes a lot.

Internal
Process to provide effort data.
External

3.1.4 Usage
Metric Decisions Made / Benefits Costs
Tests That Find Defects - Determine which tests are finding defects and which are not?

- Way to prioritize tests.
- Determine where testers are focusing their efforts.
– Helps identify tests that should be blocked from
selection/execution until the defect(s) they found have been
resolved. These are good candidates for automation.

- Team to define a common defect management
process. This includes a way to link defects to
tests and common criticality categories.
– Effort to enhance defect and test tools to record
new data.
– Effort to implement reporting/measurement
tools.

Defects Found Per Week - Level of success at finding defects.
- Adjust testing based on defect find rates.
- If few defects (or non-critical defects) are being found, may
substantiate the need for new tests.
- May be used in conjunction with “Coverage” metrics to predict
when a project is ready for release, or testing effort is complete.
- Customer Center data could be used to learn what defects are
getting past the Test Lab. This would be a better measure for
“efficiency” as opposed to the number of defects found.

- Team to define a common defect management
process. This includes a way to link defects to an
organization (i.e. Test Lab) and common criticality
categories.
- Effort to enhance defect (or other) tools to record
organization name. It may be that a maintained list
of Test Lab personnel is all that is needed.
- Effort to implement reporting tools.

Testing Coverage - Determine whether our customer usage profile fits what the
customer actually executes.
– Determine what interfaces are and are not being tested.
– Identify bottlenecks and, thereby, potential opportunities for
system performance tuning.
– Based on industry standards, is our coverage sufficient?

- Tool Investigation
- Tool Purchase
- Partnership costs with R&D and Technical
Marketing.
- Tool Implementation, Training, and ongoing
Support (i.e. dedicated resource).

Testing Benefit vs. Cost - Outsource or in house testing.
– Can we complete this project within budget?
– Are we spending too much for value added? Is our testing
efficient?
– What is the Cost/benefit of automating?
– Where are our major costs; our major opportunities for cost
reduction?
- Basis for decisions, proposals, and estimates is more visible
and easier to communicate.
– What is it costing us to find defects / test requirements?
– How can we find more critical defects / test more requirements
for less money?

Monthly Startup to Collect Cost information:
- Agreement on tool/practice for each department
to collect costs (range of 5-20 hrs /dept.; suppose
60 hrs total.)
– Method to collect data from each department
(20-40 hrs)
– Initial report (10 hrs)
total about 100 hrs.

Automation Count - Identification of opportunities for resource utilization with
automation.
– Identification of opportunities for lessening schedule impacts.
– Improving repeatability of tests.
– Estimation of schedule and resources for new projects.
- Increased efficiency in the Test Lab.
– Reduced schedule impacts and increased responsiveness
– Increased credibility and precision of reported results.
– Better ability to plan and to make sourcing decisions.

Implementation: (assume a phased
implementation as increasing numbers of activities
are identified. Also assume that area managers can
categorize broad testing areas together and that
automation is the exception right now.)
8 hours, most of which will be used to define
criteria for the automation categories; an itemized
database solution will be more costly.
Ongoing costs: As efforts are applied to automate

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 10

Metric Decisions Made / Benefits Costs
– More effective use of resources. activities, these will be reclassified. Total effort of

reporting and tracking this result should be less
than 2 hours/ month (an itemized solution will be
more costly).

Tests Configured, Executed
per Unit of Time

- Per activity, the amount of time involved in testing a project.
- What is the estimated vs. actual time spent on these testing
tasks?
- Information for developing a contingency plan to handle
changes to testing schedules, product and process.
- Provide an actual account used for estimates on future projects.
- Quick & efficient response to changes in testing schedules,
product, and process.

The effort needed for test workers to enter the time
on these testing tasks. The cost of implementing a
tool to allow such data to be entered.

3.1.5 Data To Collect (Input)
Metric Internal Data Needed External Data Needed
Tests That Find Defects - Test Name – Name of the test.

– Test ID – Unique identifier.
– Execution Date – Date test was executed.
– Defect ID – Unique identifier.
– Tool Name – Name of defect tracking tool (ex. DMS, CRMS,
ClearQuest)
– Criticality – Defect criticality (ex. High, medium, low).
– Project Name – Name of the project being tested.

N/A

Defects Found Per Week Defect id, criticality, date found, project name. Submitter’s organization.
Testing Coverage - Tests Designed to meet Requirements / Use Cases / Top Tier

Configs
- Total Number of Requirements / Use Cases / Top Tier Configs

Different types of coverage will require various
types of data from external partners.

Testing Benefit vs. Cost - Identify and prioritize the activities/outputs/deliverables for
each department, each month, for each project.
– Identify monthly expenses and capital depreciation, and
“overhead”.
– Periodically update the loaded cost of a month of test lab
personnel effort (and for categories of effort, such as
engineering Vs management, if these are used.)
- Link between requirement and the test that verified that
requirement.
– Defects found, by criticality.

Cost, defects found, requirements tested
comparisons from third party testing vendors.

Automation Count 1. Identification of activities needing automation
classification

2. Reclassifications, as they occur.
Examples:
Summary form: Number of TCP Network Test Executables: 70,
Number classified NA: 20, Number Classified Automated: 5,
Number Classified Partial: 15, Number Classified Not
Automated: 30.
Itemized form: Assumes that each test executable has an entry
in a database of Test Lab activities. An attribute of each test,
possibly in a table denoted “Automated” would be the
automated status as coded in 1.1. A typical record in this table
might look like (assuming that “cost” has been recorded in the
same table):
Test Activity Automated Status Activity Cost
DLC: Banner01 NA $1000

May want to compare with R&D development test
systems already automated.

Tests Configured, Executed
per Unit of Time

Activity ID
Activity Description
Activity Instances
Product ID
Project ID
Hours Estimated
Hours Spent (entered at regular intervals)

Example - Localization Tests Executed per hour
– Query “Execute Localization Tests” Test Activity
– Pull “Hours Spent” field
– Query “Test Instance” Data Objects and count Localization
Tests Executed
– Divide Number Counted by “Hours Spent”]

This same type of data can be requested from 3rd
party test vendors.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 11

3.1.6 Data To Display (Output)
A picture is worth a thousand words. Another important part of designing a metric is roughing
out what the initial report, graph, or chart will look like. It is not possible do provide examples of
this for every measurement defined by the Process Metrics team, but a few example reports and
graphs are represented below:

Metric = Tests That Find Defects
1) Tests That Have Found Defects

Test Name Test ID Number of Defects Found
High Medium Low Total

2) Tests That Have Found Defects - More Detail

Test Name Test ID Date
Executed

Defect ID
(and Tool Name)

Defect
Criticality

Project Name

3) Tests That Have Not Found Defects

Test Name Test ID

Metric = Testing Coverage

Test Coverage (Phase 1)

0%

20%

40%

60%

80%

100%

Test Level

Pe
rc

en
t T

es
te

d

Goal 100% 100% 100% 100%

Actual 77% 56% 85% 44%

High Lvl Comp High Lvl Comp System System

Requirements Features Use Cases Op Profiles

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 12

Metric = Automation Count

4.0 Implementing a Successful SW Testing Measurement Program
When managers and co-workers notice the rigor and time spent designing software testing
metrics, they are much more likely to support a measurement implementation plan. Successful
measurement programs have several characteristics such as an attractive value proposition,
consistent management sponsorship, adequate dedicated resources, an automated way to report
the metrics, and a way, with the metrics, to track progress towards goals set by the organization.
4.1 Value Proposition & Management Sponsorship
It is essential that managers and individual contributors understand the importance of a
measurement effort to their bottom line. One powerful message that is consistent across most
measurement programs is the ability to refocus resources. With a successful measurement
program, engineers previously responsible for generating metrics for their project can focus on
software product testing instead of generating metrics. This focus of resources away from metrics
toward activity directly benefiting customers is an influential message in the eyes of sponsors.
Another way metrics can benefit the bottom line is in the area of knowledge recovery through
program understanding. When there are metrics available on a project, it is much easier to learn
what is needed about a project. Metrics give new resources the ability to get up to speed and
working on a project faster than if few metrics are available. When test and development
engineers work together to create a quality product, substantial rework can be avoided. Rework
can be substantially reduced when metrics provide an objective medium of communication
between the test and development community. This enhanced communication is another benefit
of a metrics program that should be communicated to sponsors.

% Of Tests Automated - Network Test Center

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Not
Partial
Automated
NA

Not 30 5 40 20 20

Partial 15 5 20 0 0

Automated 5 40 10 0 0

NA 20 0 25 5 10

TCP/IP MAC Novell DLC MPS

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 13

4.2 Resources
Just like any other project, a measurement program is destined to fail if resources are not
dedicated to it. Project planning techniques such as task breakdown and other resource allocation
techniques should be used to plan the number and types of resources needed to maintain a
successful measurement effort.
4.3 Automated Tool
Metrics gathering and reporting can be a time consuming effort. Many people focused on
measurement spend days out of their work week creating and distributing metrics. There is often
a simpler way to provide metrics to important customers. There are automated measurement
tools available on the market. A decision should be made whether to purchase or create a tool
specific to the needs of the organization. One important thing to remember, whether a tool is
made or bought, is ensuring an open architecture. This means a common data standard must be in
place. This standard can receive information from a variety of sources, all of which can be
processed by the tool. Generating and displaying metrics automatically, by means of a tool, on a
regular basis, is an effective way to gain a customer base for your measurement effort.
4.3 Track Progress Toward Goals
It is essential to constantly revisit goals and illustrate, in front of sponsors, how the measurements
are used to track progress toward them. Emphasize what business decisions are made based on
the metrics. Sponsors will soon forget the importance of measurement unless metric champions
are reminding them on a regular basis.

5.0 Conclusion
The Process Metrics team and what is contained in this paper identifies all the tools necessary to
specify, design, and implement a successful Software Testing Measurement program. An
argument outlining the need for Software Testing Metrics is described, a useful Software Testing
Measurement maturity model has been introduced, a process for generating and designing
effectiveness and efficiency metrics is outlined, and experienced based suggestions for instituting
a successful measurement program have been discussed. By using the tools and processes
described in this paper, a Software Testing organization can better communicate the value of
Software Testing and the importance of testing activities in the Software Development process.

6.0 Acknowledgements
I would like to thank the members of the Process Metrics team; Troy Brunson, Tom Menten,
Karen Bellegante, and Jerry Smart. This paper would not have been possible without your
efforts.

Thanks go to my manager Mary LePori. It’s great to have a manager that believes people do a
better job when they are given the opportunity to pursue their passion.

I would like to thank my colleagues Susan Davis and Mike Dunlap for providing valuable
comments and suggestions in relation to the contents of this paper.

I would also like to thank Bob Grady, author of three books and numerous articles, for
introducing me to Software Measurement, Failure and Root Cause Analysis. His comments on
my papers, his insights and suggestions, have proven accurate and important.

Jon T. Huber jon_huber@hp.com
Software Quality Engineer, (208)396-6551
Hewlett Packard Company Applications of Software Measurement, 1999

 © Hewlett Packard Company, 1999
 Page 14

7.0 References
1. DeMarco, Tom, Controlling Software Projects, New York: Yourdon Press, 1982, p. 6.
2. Grady, Robert B., “Successful Software Process Improvement”. Prentice Hall, Inc., (1997),

pp. 60-61.
3. Grady, Robert B., “Successful Software Process Improvement”. Prentice Hall, Inc., (1997),

pp. 62-67.
4. Pol, Martin. Koomen, Tim. “Test Process Improvement”. Kluwer BedrijfsInformatie,

(1998). Software Quality Week, San Francisco and Europe, 1998.
5. Basili, Victor, and D. M. Weiss, “Tailoring the Software Process to Project Goals and

Environments,” IEEE Proceedings of the Ninth International Conference on Software
Engineering, Monterey, CA, (Apr. 1987), pp. 345-357.

6. Hewlett Packard Company. “Guide to Performance and Development Planning,” Americas
Geographic Operations Education Division, May, 1996.

