Accelerate Software Testing by Orthogonal Thinking
By Dr. Sanjay Gupta,

Consultant, Wipro Technologies
Software Testing is perhaps the most critical component of Software Development process in the Software Development Life Cycle (SDLC) with roughly 40-45% cost associated with it. The main Challenge is that How to produce a software product with high quality, low cost with absolutely no defects along with constraints like time limitations, limited budget and high market demand? To achieve the same, it is not possible to test an application with all the possible test data (sometimes it is not possible and sometimes it is not required too). Is there any way to reduce the Test Cycle by testing an application using best set of Test data? Which can uncover the unknown bugs throughout the application homogeneously with minimal risk? YES!! One answer is Orthogonal Array based Testing technique. This article explores the importance of Orthogonal Array in Software testing to achieve the high quality product.

You all are aware that in Software Development Life Cycle, number of finding the bugs is inversely proportional to the time. It means that in the initial state of the product development, number of bugs will be more. With time, after fixing the known bugs again and again the system becomes more stable. It is a well-known fact that the cost of fixing the bugs/defects increases with time. What it means is that if you find the bugs at the end of the SDLC, it cost more. So it is better, to find the problems in the initial state of the SDLC and fix them as soon as possible. Now with software development good practices, after a certain time (at the end of SDLC) we can say that the system is of High quality with a minimum number of defects (It is a fact that any software products may have some residual defects in that) . As I have already discussed that it is not possible for us to do prolong testing so the main question arises that how to achieve a good coherence between optimum testing and cost attached to that. It means that how can I test my application with confidence using optimum number of test cases which helps me in delivering the application within the given deadlines and budget.
I am sure that you will agree with my experience of working towards completing a software product as a Developer or a Testing Engineer. Once the Software product is delivered to the client after proper testing with the efforts of so many sleepless nights, and next, you expect the praising words from the client in the next email. Contrary to that, get a big list of the bugs reported by the end users in the application code. It forced me to think that when were these bugs introduced in the code? As a quality person, a question always disturbs “How did those bugs slip from testing phase?”
Let us assume that the final application contains bugs. The source of these bugs could be any of the following

· By chance, the end user executed the portion of the software, which was never given to the Testing Team to test.

· The testing engineer was just a fresher and was governed by the instructions from the developers for testing the functionality of the code and did not checked the input values with all boundary values which the end user has checked.

· And the most frequently error is the mismatch in development and the end user testing environment. I have observed that the client environment was not kept in consideration while testing the application at offshore.

· The bugs reported by testing team were not monitored/ tracked properly. Or in other words once you send all the bugs to the development team and they missed any of them and took the next built of the application to test. At is a common practice that once the developer says that he/she has closed the status of the bug (means fixed the problem), we go with the developers word and did not test the application for the same error. Also maintaining the XL Sheet or any mode of bug report is difficult to maintain.

Testing, being a challenging job also needs your skills and dedication to test all the paths and logic of the code. The main question is about your judgment about when to stop testing of a given application? Is there any proven mechanism or technique by which you can get the best set of test data which ensures you the best test coverage of the application. Orthogonal Array Testing System. Based upon the data across different projects after using OATS, I can surely say that OATS will help you in recognizing the least number of good test data combinations from a large pool of possible combinations.
Orthogonal Array Testing system is extensible used in Manufacturing domain. This robust testing methodology was developed by Prof. Genichi Taguchi. As software field is also recognized as engineering discipline, a successful usage is also experienced in the Software Testing area. The OATS (Orthogonal Array Testing System) technique supports the system test efforts by enabling minimum test cases to be determined efficiently which can homogeneously penetrate the application towards assuring the maximum/homogeneous testing coverage. The details about OA and its usage can be read in details in the book ”Quality Engineering Using Robust Design” by Madhan S. Phadke. The main philosophy of this technique is that test cases depending on interaction between test parameter will be able to penetrate an application deeply and homogeneously. Hence, you will be able to find out more serious errors in the application. Let me discuss the usage of OATS and how effectively it works. I will be using our practical findings with one of my research work in the field of High Temperature Superconductivity. You can go through this paper entitled “The interrelationship of Cu effective charge and superconductivity in the T'-type Gd1.85-xPrxCe0.15CuOy system ” by Sanjay Gupta et. al. at the site http://www.iop.org/EJ/article/0953-8984/12/1/102/cm12001l2.html

Don’t go in details as the paper is more Materials Science based and the terminologies will be very different from the Software area. The overall finding is that for the T'-type Gd1.85-xPrxCe0.15CuOy for 0.0≤x≤1.85 compounds (which are also known as electron doped superconductors as the charge carriers are holes), there is a interrelationship between Oxygen content, Pr (Praseodymium) concentration, Cu (Copper) effective charge (n) and the Superconductivity Critical Temperature Tc (the temperature below which a particular material behaves as superconductor). The experimental findings show that the superconductive response (Tc onset) of the samples is related to n (Effective charge on Cu ion). Whenever n≤1.87 (±0.01), the compounds are superconducting. The optimum Tc is seen for n ~ 1.79 which is in good agreement with the values of n (1.77≤ n≤ 1.84) calculated from the reported y in different optimum Tc T'-cuprates (The lattice structure of this element is known as T-prime).

Let me take-up this problem as a software problem which have these 4 variables (x, y, n and Tc). The finding of the work is summarized in below Table 1:
Table 1: Estimated values of the oxygen content (y), effective charge (n) on Cu and Tc for Gd1.85-xPrxCe0.15CuOy compounds.
	x (Pr value)

	y (oxygen)
	n (Cu effective charge)
	Tc (SC. Temp.) in Kelvin

	0.00
	2.01
	1.95
	non-SC

	0.00
	4.05
	1.97
	non-SC

	1.10
	4.01
	1.87
	6.5 K

	1.10
	4.07
	1.99
	non-Sc

	1.35
	3.98
	1.81
	17.0 K

	1.35
	4.07
	1.99
	non-SC

	1.85
	3.97
	1.79
	21.0 K

	1.85
	4.08
	2.01
	non-SC

It is clear from the Table 1 that x can take four different values (0.00, 1.10, 1.35 and 1.85), y can have seven different values (2.01, 4.05, 4.01, 4.07, 3.98, 3.97 and 4.08), n can take seven different values (1.95, 1.97, 1.87, 1.99, 1.81, 1.79, 2.01) and due to all these combinations the superconducting nature of the compounds may have only four values (non superconducting (non-Sc), superconducting at 6.5, 17.0, and 21.0 K). So, if you want to test this application meticulously, you have to test 4(x) x 7(y) x 7(n)x 4(Tc)= 784 combinations.
Let us apply OA concept and use the OA tool to generate best, minimal test combinations for testing this application for best test coverage. In OA analysis we use two technical terms, Factors and Levels. In general, Factor means number of variables and Level means, number of values a particular variable can take up. It is very important for a Test Engineer to determine the right Factors and Levels in a given application.
[image: image1.png]No of Factors |

Factor Name.

No Of Levels

Level Values

Pr 4
oxygen | 7
valence | 7
e 4

<<back | [Generate0n | | change No ofFactors |

Fig.1: Representation of Factors and Level values in a OA tool.

It is clear from Fig. 1, that we have four variables and each variable can take 4,7,7 and 4 values respectively. At this moment one can also generate a OA from these inputs, but if you know that certain combinations are not at all possible, you can refine or OA analysis more (Fig.2). For example, in Fig. 2, subject knowledge (domain expertise) hints me that for x = 0.0 the oxygen content in the compound can not be 4.01, 4.07, 3.98, 3.97 or 4.07. So these combinations can be omitted by checking them out.

[image: image2.png]No of Factors.

1.85
407
1.99
210

1.35
401
1.87
17.0

1.10
4.05
1.97
65

0.00
2.01
1.95

4.08
2.01

3.97

1.79

3.98
181

Pr

oxygen

tc

Please tick for marking Infeasible Combinations

Fig.2: You may also omit certain combinations which you feel are not possible or will not be responsible for error generation.

Once a Simple OA concept coupled with the domain knowledge is used, the result shows significant reduction in the test cases to test this application in best way.

[image: image3.png]No of Factors

Pr 4 0.00 110 135 185
oxygen | 7 201405 401 407 398 397 408
valence | 7 195 197 187 195 181 175 201
e [nsc 65 170 210

Final Nested OA

0A : % Coverage

[Runs Proxygen valence tc

Combinations

Possible %
Combinations Coverage

Fig. 3: The Suitable Test Case combinations generated by OA Tool for the discussed problem.

Fig. 3 shows the output of the OA tool for this problem. You can clearly see the tremendous reduction in your testing efforts (> 90 %) towards testing this application. It is clear from the results that these test cases have covered the application with single value, with two combinations by 100 %. When the application was tested for the three or four value combinations the coverage goes down. In other terms, if the system reports some bug because of three or four value combinations the risk is more. In such a conditions when you know such scenarios which are not reported by OA tool, you can add them to this table and make your testing more robust and reliable with a better coverage. If you see carefully all the test cases generated by the tool, it covers all those possible conditions which was practically possible. Testing the OA strength in this way will boost your confidence to utilize its power in future projects too.
Can we believe totally on OA based output to release a product? Definitely Not! The suggestion will be use OA along with domain knowledge and other techniques like Dependency Structure Matrix, boundary value analysis etc. You can couple your OA results and come up with a reliable number of test cases which can test your application in a best way. The case studies in the real life projects have shown nearly 60-70 % effort savings when OA technique was considered as one of the major factor during Test case generation.

Summary:

In the current environment by keeping the short deadlines, budget constraints and many other factors in mind, an exhaustive testing is not viable. The effort to include all possible combinations and variations to test input parameters is generally an impracticable activity for multifaceted applications. In such a case, we mostly try to use our presumptions based on the experience to ignore certain number of test combinations. Assumptions like this may work and sometimes it may also result in producing a low quality product. So when your testing effort needs to test a large number of unattainable combinations, the Orthogonal Array methodology can be very useful guideline for you to come up with best fit combinations of Test cases. It guaranties you minimum once testing the pair wise combinations of all the given variables. It also drills some of the complex combinations of all the test variables.
Acknowledgement: Author is acknowledged to Mr. Murugavel Rajamanoharan and Mr. Anand Moorthy for their support to write this article.
About the Author Dr. Sanjay Gupta received his Ph.D. degree from the Indian Institute of Technology, Mumbai, India. He is working as Consultant in Testing Services, Wipro Technologies. He is a Sun Certified Java programmer as well as Sun Certified Trainer. He has published nearly thirty research papers in international journals and presented research papers in more than fifteen international and national conferences. His current areas of research, study, and knowledge dissemination are Java, Swings, J2EE technology, Insurance domain and Testing tools like Rational Purify, Pure Coverage, Robot and Mathematica. He can be reached at sanjay.guptha@wipro.com .
