 A discussion on Automation implementation
Abstract: When we discuss test automation, we usually spend the bulk of our time and effort

discussing pre-requisites and preparation, design and architecture. We probably haven’t
discussed a great deal about implementation. In this article, I will attempt to talk about the
implementation part of test automation and will provide some insights (from my experience) on
how to avoid the potential pitfalls and unpleasant consequences that a faulty implementation
may bring about.
My discussion is based on the following assumptions,

A data driven design is completed and approved by team members and management

All the necessary code is completed to support the design

A demo of the test run is completed

Q&A with the team members is completed

All the documentation and workflow diagrams are completed and approved by team members

Notice that I have included team members in almost every phase of this process. It is of
utmost importance that we have most (if not all) of the team members on board, because if they

don’t understand the design and don’t approve of the process then we are setting ourselves up

for sure failure. Now, with the blessings from the management and the team members we are

ready to do the implementation. Here is my observation of implementation of all the automation
projects that I had the opportunity (or misfortune) to be a part of,

Automation as a separate entity: As the name suggests, this is a separate group where a
number of automation engineers are responsible for all phases of automation. A lead automation
is usually responsible for making sure that,

Test tool is functional

Test environment (availability of test servers, workstations, communications etc.) is ready

Test scripts are working as they should

Test scripts are updated as they need to

Test data are accurate
Test scripts are debugged if they need to

Reporting of test results are done as they should be
The size of this automation team varies from place to place. I have seen a team from two to three
engineers to a team of ten to fifteen engineers depending on the amount of work needs to done.

There is always this age old question as to what percentage of total testing should to be
automated. I don’t know of any industry standard that gives us that magic number. I suppose it
all depends on the type of the application and the degree of details and complexity of the test
cases. Like everything else, there are advantages and disadvantages to this approach, Here are
some,

Advantages: One of the advantages of this structure is the operational reliability of the code. As
this is a small group, maintaining the accuracy of the code is fairly simple. The best part of a data
driven design is the reuse of code and changes made in any part of the code is sure to have an
effect in areas of the application where the same code is used and reused time and again.
Disadvantages: There are whole host of disadvantages to this approach. Let me explain in

context of our application (N-Spire). N-Spire is a combination of a group of following
applications,

· Calculator

· Graph & Geometry

· List & Spreadsheet

· Notes

· Data & Statistics

· Program Editor

Each group is treated as a separate entity in respect to,
· User stories

· Estimates

· Test case creation

· Test case execution

There are few instances of overlapping and dependency between applications. Data can also

be accessed and shared between applications. In any case, the task of automating hundreds
of test cases of all six applications using this approach can have the following drawbacks,

a). Bottle neck: Automation of each area (Regression, GUI, Functional etc.) of any application is
a huge undertaking. If we are to add this group of applications (Calculator, List & Spreadsheet,
Notes, Data & Statistics, Program Editor) into the mix, it will make the task of automation a
daunting one for any automation team. If we don’t have a large automation team, it will create a
bottle neck as each group waits for its turn.
b). Longer development time: As test data are created based on the test cases, any discrepancies
(missing steps, invalid data in an edit field etc.) will need to be communicated to manual testers
who has written or is familiar with the test cases. In some instances test cases may need to be
updated. Although it is customary to have test cases ready prior to automation, but it is not
always the case. As a result, there is a continuous interaction between the two. This not only adds
to the development time on automation side, but also a distraction to manual testers.

c). Longer maintenance time: Although the expectation is to have all the necessary
pre-requisites (a stable application, very little (if any) changes with the existing GUI &

functionalities etc.) are to be in place, I am yet to see this to be the case. As new functionalities
are constantly added to the application, existing ones are getting modified as well. The changes

in the existing functionalities need to be communicated to both manual and automation teams
such that test cases and test data are in sync. Thus, this exchange of information between the two

not only adds to the maintenance time on automation side, but also a distraction to manual testers.
d). Isolation: The very nature of this approach separates automation from rest of the QA.

Automation is looked as if it is an entity sitting outside of QA parameter. This perception creates
a disconnect between automation and manual testing. After all these years, there is still an
ambiguity about automation among manual testers. Automation is also looked with a little
suspicion in some segments of QA. There are misgivings about its effectiveness among some
QA managers and mistrust of its intentions among manual testers. It is almost like the political
divide we have in this country as red states and blue states. Automation is yet to capture the
attention of the mass in a meaningful way.
Automation as an integrated entity: The solution may be in integration. Integration of test
automation into overall schemes of testing such that a manual tester can participate in it if he or
she wants to. This is only possible by not treating automation as a separate entity but by
incorporating the development, maintenance and execution of automation at local levels. Let me
explain it again in context of our application (N-Spire). I have explained earlier that N-Spire is a

combination of a number of applications which are treated as separate entities in terms of its

user stories, estimates, test case creation and test case execution. We have an excellent

opportunity to incorporate automation within each application. The goal is to let each group take
the ownership of their automation. After the design is done and approved, code is completed and
tested, demo and Q&A sessions are conducted, documentation and workflow diagrams are in

place, each group will then take the ownership of the automation suite. Each will have their own
set of automation suite and will be responsible for its development and maintenance according to
their needs and requirements. Here are some advantages to this approach,

a). No bottle neck: As each team has complete control over its automation, they can start
creating new test data or modifying existing test data as soon as they want to. They can also

make changes to the test scripts if they need to and not worry how the changes may have an

effect on other teams as long as the changes are communicated to the rest of the members with in
the team. Now each team can do automation simultaneously as they no longer need to stand in
line and wait for their turn.
b). Shorter development and maintenance time: Each team knows their application and test
cases better than others and can make the necessary changes to test cases and test data with
higher speed and better accuracy than any body else. This domain knowledge goes a long way
when developing and modifying test data for new and existing functionality. The absence of
a separate automation team eliminates the need for exchange of information between manual

testers and automation team and thus reduces the flow of missed or faulty information between
the two.
c). Participation: The best part of this approach is the opportunity of the mass to participate in

automation. This participation of the peck eliminates the disconnect between automation and
manual testing. As most everybody has the opportunity to get involved, automation becomes
more transparent and thus ambiguity about and mistrust towards automation will likely to
disappear slowly. Once the fear and suspicion about automation disappears, participation in
automation will likely to increase and it will probably be good for the industry. But the key to
the success of integration lies in simple design; simple enough for a manual tester with little
knowledge of programming and some awareness of logic to understand it. There is no reason to
make automation to be rocket science. Let’s keep it simple. I believe in Albert Einstein's
philosophy when he said,” Make everything as simple as possible, but not simpler.”
