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Is Statistical Process Control Applicable to Software Development Processes? 
 

By Bob Raczynski 

Abstract 
Statistical Process Control (SPC) has been an integral component of the Software Engineering Institute’s (SEI’s) maturity models for 
about nineteen years.  This article describes an intellectual journey in which the primacy of SPC applied to software development 
processes is challenged. 
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What is Statistical Process Control? 
According to Dr. Donald J. Wheeler and David S. Chambers, “SPC is a way of thinking which happens to have some tools attached” 
[Wheeler, Chambers, 1992].  It was developed in the 1920s by Dr. Walter A. Shewhart to address the problem of variation resulting 
from the manufacture of physical products, and was popularized in the 1950s by Dr. W. E. Deming.  It did have a profound impact 
within the world of physical product manufacturing, and continues to today. 
 
A main concept is that, for any measurable process characteristic, the notion that causes of variation can be separated into two distinct 
classes:  1) Normal (sometimes also referred to as common or chance) causes of variation and 2) assignable (sometimes also referred 
to as special) causes of variation.  The idea is that most processes have many causes of variation, most of them are minor, can be 
ignored, and if we can only identify the few dominate causes, then we can focus our resources on those.  SPC allows us to detect when 
the few dominant causes of variation are present.  If the dominant (assignable) causes of variation can be detected, potentially they can 
be identified and removed.  Once removed, the process is said to be stable, which means that its resulting variation can be expected to 
stay within a known set of limits, at least until another assignable cause of variation is introduced. 
 
This turns out to be a powerful idea since it allows physical product manufacturers to, as Dr. W. E. Deming points out, “Cease 
dependence on mass inspection,” [Deming, 1982] which dramatically reduces the cost of producing products with high quality (that is, 
products that meet their specifications). 
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The Emphasis 
In the early 1990s, the SEITM Capability Maturity Model® for Software included SPC as an integral component.  These concepts 
remain in today’s Capability Maturity Model Integrated (CMMI®).  The following statements from the CMMI for Development, 
version 1.2 [SEI, 2006] demonstrate the degree of emphasis placed upon SPC concepts: 
 
Under a section titled “Maturity Level 4:  Quantitatively Managed” 

“Special causes of process variation are identified and, where appropriate, the sources of special causes are corrected to 
prevent future occurrences.” 

 
Under a section titled “Quantitatively Managed Process” 

“Quantitative management is performed on the overall set of processes that produces a product. The subprocesses that are 
significant contributors to overall process performance are statistically managed. For these selected subprocesses, detailed 
measures of process performance are collected and statistically analyzed. Special causes of process variation are identified and, 
where appropriate, the source of the special cause is addressed to prevent its recurrence.” 

 
Under a section titled “Maturity Level 5: Optimizing” 

“At maturity level 5, an organization continually improves its processes based on a quantitative understanding of the common 
causes of variation inherent in processes." 

 
Under a section titled “Optimizing Process” 

“In a process that is optimized, common causes of process variation are addressed by changing the process in a way that will 
shift the mean or decrease variation when the process is restabilized. These changes are intended to improve process 
performance and to achieve the organization’s established process improvement objectives.” 

 
To support this concept, the Quantitative Project Management (QPM) process area in the CMMI, Specific Goal #2 exhorts 
“Statistically Manage Subprocess Performance” with Specific Practice 2.2® stating "Apply Statistical Methods to Understand 
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Variation."  The CMMI defines a Statistically Managed Process as “A process that is managed by a statistically based technique in 
which processes are analyzed, special causes of process variation are identified, and performance is contained within well-defined 
limits.” 
 
Further, CMMI Generic Practice #4.2 states "Stabilize Subprocess Performance" and elaborates with "A stable subprocess shows no 
significant indication of special causes of process variation. Stable subprocesses are predictable within the limits established by the 
natural bounds of the subprocess." 
 
Whenever one speaks about the identification of special (or assignable) causes of variation or the understanding of common (or 
normal or chance) causes of variation, he or she is talking, without question, about the use of SPC since SPC is the only known 
technique capable of such identification/understanding.  The CMMI for Development, version 1.2 uses the term “variation” 83 times, 
the term “special cause” 39 times, and the term “common cause” 19 times. 
 
Clearly, there is a significant amount of emphasis placed upon SPC within the CMMI.  So much emphasis, that an organization cannot 
exceed a CMMI process maturity level rating of 3 without performing SPC.  The CMMI doesn’t emphasize any other measurement 
and analysis technique to this degree.  Essentially, isn’t the CMMI placing SPC on a pedestal as the Holy Grail of Measurement and 
Analysis Techniques? 

The Uneasy Feeling 
A while back, I was working for an organization that had achieved a CMMI Level 3 assessment rating.  I started looking into what it 
would take for us to achieve CMMI level 4 or 5.  When I learned that it would require that we perform SPC, it didn’t seem quite right, 
but I couldn’t put my finger on the reason at that time.  The first thing that I questioned centered around the fact that SPC has 
traditionally been applied to very repetitive processes in physical product manufacturing.  Software development processes, and 
engineering processes in general, are human intensive, knowledge intensive, and less repetitive by nature than those of physical 
product manufacturing. 
 
It occurred to me that physical product manufacturers have requirements, design, prototype, and test processes, just like software 
development shops.  However, historically SPC hasn't been applied to those engineering processes.  Traditionally, SPC was applied to 
the production process where the “copies” of the finished products are made.  Software development organizations have production 
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processes as well.  The difference is that software development organizations are manufacturing 1’s and 0’s, and due to the logical 
nature of their products, for all practical purposes these production processes produce perfect copies every time, with no variation.  
Consequently, it isn’t useful to apply SPC to software production processes.  Since SPC isn’t applicable to a software development 
organization’s production processes, the only processes to which SPC can be applied is the organization’s engineering processes.  This 
realization gave me an uneasy feeling, but I figured that surely, I just didn’t understand the concepts of SPC well enough.  So I 
decided to do some research with the goal of understanding the reason for the amount of emphasis that the CMMI places upon SPC. 

The Warning Signs 
This section summarizes what I found as I researched the applicability of SPC to software development processes. 
 
The IEEE Standard Dictionary of Measures to Produce Reliable Software, contains no recommendation for SPC [IEEE, 1998].  I 
found this interesting. 
 
The Practical Software and Systems Measurement, also contains no recommendation for SPC [DOD, 2000].  Again, I found this 
interesting. 
 
In Out of the Crisis, Deming explains his famous 14 points.  Point 3 states “Cease dependence on mass inspection” [Deming, 1982].  
By this, Deming is suggesting that the concepts of SPC be used to remove assignable causes of variation, resulting in stable processes 
whose performance can be confidently predicted.  If the normal variation of those processes is within the desired specifications, then it 
isn’t necessary to inspect every product coming off the line.  Instead, products only need to be spot-checked (sampled) to ensure that 
the processes remain stable.  Deming then goes on to state “We must note that there are exceptions, circumstances in which mistakes 
and duds are inevitable but intolerable.”  By this, Deming is conceding that this technique won’t work in all situations. 
 
In Quality Control Handbook, Juran states “Unfortunately, as is often the case in such matters, Shewhart’s prospectus [of SPC] has 
become orthodoxy for many of today’s quality control practitioners” [Juran, 1988].  Clearly Juran has reservations about the universal 
applicability of SPC. 
 
In Metrics and Models In Software quality Engineering, Stephen H. Kan states “However, in software development it is difficult to 
use control charts in the formal SPC manner.  It is a formidable task, if not impossible, to define the process capability of a software 
development process” [Kan, 2003]. 
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Ian Sommerville, a professor at St. Andrew’s University and author of a graduate-level software engineering textbook, Software 
Engineering, first quotes Watts Humphrey:  “W. E. Deming, in his work with the Japanese industry after World War II, applied the 
concepts of statistical process control to industry.  While there are important differences, these concepts are just as applicable to 
software as they are to automobiles, cameras, wristwatches and steel” [Sommerville, 2004]. Then Sommerville goes on to state “While 
there are clearly similarities, I do not agree with Humphrey that results from manufacturing engineering can be transferred directly to 
software engineering.  Where manufacturing is involved, the process/product relationship is very obvious.  Improving a process so 
that defects are avoided will lead to better products.  This link is less obvious when the products is intangible and dependent, to some 
extent, on intellectual processes that cannot be automated.  Software quality is not dependent on a manufacturing process but on a 
design process where individual human capabilities are significant.” 
 
The ISO 9001:2000 standard doesn’t prescribe SPC [ISO, 2000].  I found this particularly interesting since ISO 9001:2000 has its 
roots in manufacturing where SPC is undeniably applicable. 
 
In Understanding Statistical Process Control, Dr. Donald J. Wheeler and David S. Chambers state “Attribute Data differ from 
Measurement Data in two ways.  First of all Attribute Data have certain irreducible discreteness which Measurement Data do not 
possess.  Secondly, every count must have a known ‘Area of Opportunity’ to be well-defined” [Wheeler, Chambers, 1992].  It turns 
out that knowing the Area of Opportunity associated with a given chunk of code (software) isn’t easy.  I’ll explain below. 
 
On the SEI’s web site, I found a paper entitled “Statistical Process Control for Software.”  In it, it states “Control limits become wider 
and control charts less sensitive to assignable causes when containing non-homogeneous data” [Carleton, 2005].  It turns out that 
obtaining homogeneous data from a software development process isn’t easy.  Again, I’ll explain below. 
 
As can be seen, there exist many “warning signs” scattered throughout literature that counsel us about the incorrect application of 
SPC, and there exists software measurement guides and standards in which the presence of SPC is notably absent. 

The Problems 
While reading about the application of SPC to physical product manufacturing processes, I thought about the corresponding 
application to software development processes, and it became apparent that there exist some fundamental distinctions between these 
two environments.  It also became apparent that these differences pose significant problems with regard to the application of SPC.  In 
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this section, I explain what I consider to be the four most significant problems with the application of SPC to software development 
processes. 

Problem #1 – Wide Control Limits 
I think that Stephen H. Kan states it best: “Many assumptions that underlie control charts are not being met in software data.  Perhaps 
the most critical one is that data variation is from homogeneous sources of variation” ... “Therefore, even with exact formulas and the 
most suitable type of control charts, the resultant control limits are not always useful.  For instance, the control limits in software 
applications are often too wide to be useful.” [Kan, 2003]   
 
The lack of data homogeneity that Dr. Kan refers to is the result of the process (more accurately, the set of similar processes) 
containing multiple “common cause systems.”  To understand the concept of a common cause system, consider a manufacturing line 
for a screw.  Iron cylinders are the input to the process.  A well-defined set of machining operations occur, and the finished screws are 
the output of the process.  Within this process, all inputs are similar in type (that is iron cylinders) and all of the processing elements 
are similar (the same operations performed by the same machines).  This process represents a single common cause system in which a 
predictable set of common causes of variation (and possibly some assignable causes of variation) can be expected to exist.  Now, 
suppose we start alternating the inputs between the original iron cylinders and those made of brass.  Should we expect the same 
resulting variation?  Of course not.  The different metals have different characteristics which will likely result in different variation.  
Now, our process (more accurately, pair of processes) has two common cause systems present, which, if mixed on a single control 
chart, will exhibit wider control limits than would be the case if the two different common causes systems were charted independently.  
The result is control charts with low sensitivity to assignable causes of variation.  Additional common cause systems would be 
introduced if the processing elements were not performed by the same machines every cycle.  When the inputs or the processing 
elements change between process invocations, we no longer have a single “voice of a process,” but rather a conglomeration of voices 
of many different processes. 
 
Disaggregating data from the process into the distinct common cause systems is the obvious solution, but unfortunately, 
disaggregating the data from the many common cause systems contained within most software development processes isn't practical.  
Even if successful in accurately disaggregating the data, the resulting multitude of control charts will likely each contain too few data 
points to be useful [Raczynski/Curtis, 2008]. 
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Problem #2 – Impossible to eliminate all assignable causes of variation 
Think back to the screw manufacturing example.  Lets say that a single common cause system was in place (the inputs and processing 
elements were virtually identical between process invocations).  Let us further say that after manufacturing about 200,000 screws, an 
assignable cause of variation was detected by our control charts.  Upon systematic evaluation of the manufacturing line, the assignable 
cause was determined to be a worn roller within one of the machines.  Once the worn roller was identified as the culprit, the assignable 
cause of the variation was persistently removed simply by replacing the worn roller with a new one. 
 
Is this so simple when the process is human intensive and knowledge intensive?  To answer that question, consider some potential 
causes of variation of a human-intensive, knowledge-intensive processes such as a code inspection.  Certainly, process invocations 
involving different people, with different experience and knowledge levels will show a large amount of variation (because they are 
different common cause systems).  However, even if each invocation of the process involves the exact same people, abnormal 
variation could result if one or more of the following applies to one or more of the people: 

- Just quit smoking 
- Didn’t get enough sleep 
- Is going through a divorce 
- Mom died 
- Is under a schedule crunch 
- Is bitter due to lack of recognition 
- Doesn’t feel well 
- Is being bothered by mother-in-law 
- Is becoming unsatisfied with job 
- Is not familiar with the piece of code being inspected 
- Found out that he/she needs surgery 
- Is recovering from surgery 
- Is feeling depressed 

 
The list goes on and on.  If SPC is being applied to a characteristic of this inspection process, and an assignable cause of variation is 
detected on the control chart, then will it be as easy to systematically analyze the process in order to identify the source of that 
variation as it was to identify the worn roller in the screw manufacturing example?  Of course not.  It is much more difficult to identify 
causes of variation that are human in nature.  Even if you do successfully identify the assignable cause of variation, then how easy is it 
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going to be to eliminate that cause to prevent reoccurrence?  Will it be as easy as replacing a worn roller in a machine?  Again, of 
course not, due to the human element.  One cannot just open up a person’s head to fix the problem. 

Problem #3 – Each Process is Different From Invocation to Invocation 
A distinguishing feature between manufacturing production processes and software development processes is the degree of 
repetitiveness of the processes.  Manufacturing production processes create the same product over and over from virtually identical 
inputs and with virtually identical processing elements from invocation to invocation.  In contrast, software development processes 
aren’t creating the same piece of code over and over.  So, the following questions arose:  Are all processes alike?  Are some processes 
more repetitive between invocations than others?  To help illustrate, I created Table 1.
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Table 1 – Process repetitiveness classification 

 
Processing elements 
between invocations 

virtually identical 

Processing elements 
between invocations are 
different, but are in the 

same class

Processing between 
invocations in 
different class 

Inputs between 
invocations virtually 

identical 
Manufacturing Process   

Inputs between 
invocations are 

different, but are in 
the same class 

 Software Inspection  

Inputs between 
invocations in 
different class 

   

 
The two characteristics of process invocations that determine whether the different invocations are instances of the same parent 
process, are instances of different parent processes, or are instances of parent processes that are different, but similar, are the similarity 
of the inputs and the processing elements between the invocations.  
 
In some processes, the inputs to the process are virtually identical from invocation to invocation, and the processing elements are 
virtually identical from invocation to invocation. 
 
If, between invocations, either the inputs or the processing elements are completely different, then these different process invocations 
can hardly be considered instances of the same process. 
 
In some processes, however, such as a code inspection process, the inputs are different every time, but are in the same class of objects 
(that is, code), and the processing elements are different, but again, are within the same class of processing (that is, human 
understanding of written code).  Even though the inputs and processing elements between invocations are in the same class, they are 
still different from invocation to invocation.  Can these invocations be considered instances of the same parent process from a process 
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variation standpoint?  If, for example, when we started feeding brass pieces into our screw manufacturing process instead of iron 
pieces, should we expect the same variation to result?  Of course not. 
 
When control charts are used with a manufacturing process, the control limits are re-calculated after a known process change, such as 
changing the inputs to the process, occurs.  Software development processes never have the same inputs between invocations. 
 
Figure 1 is a cartoon that illustrates this concept of “in the same class, but still different” with a touch of humor. 
 

 
Figure 1 – In the same class, but still different - Cartoon by Beth Raczynski 



 

page 11 of 16 

Problem #4 – Can’t Normalize the Data 
Recall the prior quote: “every count must have a known ‘Area of Opportunity’ to be well-defined” [Wheeler, Chambers, 1992].  In 
order to plot attribute data on a control chart, it is necessary to normalize the data using a known area of opportunity. 
 
For the sake of those readers not familiar with the terms “normalization” or “area of opportunity,” consider the following example: 
Your business has two cable suppliers, Supplier A and Supplier B.  You have been keeping track of the number of defects identified 
with each supplier’s cable over the course of the last year.  Your counts show that 20 defects have been identified in cable coming 
from Supplier A, and that only 10 defects have been identified in cable coming from Supplier B.  Can we say that Supplier B has 
superior quality than Supplier A?  No, because you first need to consider the quantity of cable that was provided by both.  In this case, 
you learned that your company purchased 100,000 feet of cable from Supplier A, and only 10,000 feet of cable from Supplier B in the 
previous year.  The length of the cable represents the area of opportunity.  If we divide the defect counts by the area of opportunity, 
then the resulting values (in defects per foot) are considered to be normalized, and can rightfully be compared.  In this example, the 
quality of cable supplied by Supplier A exceeds the quality of cable supplied by Supplier B by a factor of five. 
 
Unfortunately, quantifying the area of opportunity isn’t so easy with code.  Some code is very straight-forward while other code is 
comparatively much more complex.  The area of opportunity of complex code can be much greater than the area of opportunity of 
straight-forward code, even if the two chucks of code have the same number of logical source lines of code (SLOC) and the same 
computed complexity value. 
 
Consider Code Sample A below.  Code Sample A includes a few header files, declares a few variables, asks the user to input two 
numbers, performs some comparisons on those two numbers, performs some simple arithmetic on the numbers, and prints the results.  
This is a very straight forward program. 
 
Code Sample A: 
------------------------------------------------------------------------------------- 
#include <stdio.h> 
#include <strings.h> 
#include <stdlib.h> 
 
int main(void) 
{ 
  int number1, number2, number3, number4, number5, number6, ii; 
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  printf("\nPlease enter a number: "); scanf("%d", &number1); 
  printf("\nPlease enter another number: "); scanf("%d", &number2); 
 
  if ( number1 > number2 ) { 
    printf("\nThe first number is greater"); 
  } 
  if ( number2 > number1 ) { 
    printf("\nThe second number is greater"); 
  } 
  if ( number1 == number2 ) { 
    printf("\nThe first and second numbers are equal"); 
  } 
     
  number3 = number1 + number2; printf("\nAddition:  %d + %d = %d", number1, number2, number3); 
  number4 = number1 - number2; printf("\nSubtraction:  %d - %d = %d", number1, number2, number4); 
  number5 = number1 * number2; printf("\nMultiplication:  %d x %d = %d", number1, number2, number5); 
  number6 = number1 / number2; printf("\nDivision:  %d / %d = %d (no remainder calculated)", number1, number2, number6); 
 
  printf("\n\n Have a nice day!"); 
  return 0; 
} 
------------------------------------------------------------------------------------- 
 
Now consider Code Sample B.  Code Sample B includes a couple header files, #defines a value, declares a structure and some other 
variables.  After that, Code Sample B becomes rather difficult to understand.  It would require even a seasoned programmer a while to 
figure out what this program is doing due to the complexity and obscurity of the code. 
 
Code Sample B: 
------------------------------------------------------------------------------------- 
#include <stdio.h> 
#include <string.h> 
void main( void ) 
{ 
    #define VAL 63 
    struct d { 
        short a,b,c; 
        float aa;} e; 
    register int xx = -12; 
    volatile char  cf = ~xx; 
    short fc = cf<<1; 
    memset( &e,0, sizeof e); 
    xx = scanf( "%d %c", &fc, &cf ); 
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    if(xx=cf=='f'?1:0) { 
        e.a = 5; 
        e.b = (e.a<<1)-1; 
        e.c = (0x10)<<(2%e.a>>1); 
        e.aa = ((((float)(e.a))*(float)(e.b<<1))/(e.b*(VAL^45)))*(float)(fc-( e.c == 1+(VAL>>1) ? 32:-44)); 
        printf( "%c = %f\n", 'A'+2, e.aa );} 
    else { 
        short a[VAL&~060] = { (VAL>>3)-2 }; 
        short * ptr = &a[ ((sizeof a)>>1) & 0xfff5 ], **pptr = &ptr, *pttr = a; 
        float * eaptr = &e.aa; 
        *(++pttr) = e.c + 2*a[0] - e.a - (VAL>>a[0]); 
 *(ptr -= 3) = ((*pttr + a[0])<<1) + sizeof (int); 
        *eaptr = (float)(**pptr) + ((float)(*pttr*fc))/(float)a[0]; 
        printf("\nF = %f\n", e.aa );} 
} 
------------------------------------------------------------------------------------- 
 
Code Sample A and Code Sample B each contain 31 logical SLOC statements, and both have a McCabe Cyclomatic Complexity 
value of four. 
 
So what is the area of opportunity for these two code samples?  I don’t know.  I have no way to accurately quantify the two areas of 
opportunities.  I can only subjectively state that the area of opportunity for Code Sample B is far greater than that of Code Sample A. 
 
In summary, SPC cannot be applied if the data cannot be normalized.  The data cannot be normalized if the area of opportunity cannot 
be quantified.  Since the area of opportunity for different pieces of code (software) cannot be accurately quantified, the proper 
application of SPC to processes which operate on code isn’t feasible. 

So, Can SPC be applied to Software Development Processes? 
Well, if you do apply SPC to software development processes, you might occasionally get lucky and detect a real assignable cause of 
variation despite the wide control limits of your control charts, the unequal area of opportunities, and the ever-changing processes.  Of 
the assignable causes of variation that you do manage to detect, you might occasionally get lucky and actually identify one of the 
causes of that variation.  Of the very few assignable causes of variation that you manage to identify, one of them might occasionally 
be of a nature in which it can actually be removed with some persistence.  Even so, the overall system will hardly be more 
predictable. 
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Given that SPC has been prescribed by the CMM and CMMI for over a decade, I expected to find hundreds, if not thousands of peer-
reviewed publications that demonstrate the use of SPC to successfully improve software development processes.  During my research, 
I did find a few examples of SPC applied to software development processes, but one thing that I noticed in those articles is that they 
generally failed to detect, identify, and remove with persistence, assignable causes of variation in the process.  Instead, they seemed to 
focus on the method of SPC, the data homogeneity issues, and attempts to resolve those issues.  The processes under study were left 
unimproved. 

Are there better alternatives? 
I have found that there are other measures and indicators that have proven more useful than SPC.  For example, I was surprised how 
many organizations analyze the heck out of their inspection process, yet they have no idea what percentage of their total code is 
actually being inspected.  My experience is that many organizations only inspect a very small portion of the code that they produce.  
What good is all that analysis going to do the organization if only 10% of the code that goes out the door is being inspected?  Michael 
Fagan got it right [Fagan, 1976].  If you perform work product inspections, you will identify defects earlier, and will save money, even 
if those inspections aren’t being performed at the highest level of optimization possible.  I have found that an inspection coverage goal 
and indicator against that goal is very insightful.  There are many other useful measures and indicators.  Which are the most useful 
depends on the unique circumstances and needs of each organization. 
 
For predictability of the overall system, I recommend using a parametric modeling tool [Putnam, 1992]. 

The Other Problem  
Recall the following quote from the CMMI for Development, version 1.2: 
 
Maturity Level 5: Optimizing: 
“At maturity level 5, an organization continually improves its processes based on a quantitative understanding of the common causes 
of variation inherent in processes.” 
 
I had a couple of private conversations with Dr. Donald J. Wheeler on the topic of SPC applied to software, and he thought that the 
above statement was, well, an incorrect use of SPC.  In his book, The Six Sigma Practitioner’s guide to Data Analysis, Dr. Wheeler 
explains why this is incorrect:  “Since reengineering a process is never cheap, it should be undertaken only when it is needed” 
[Wheeler, 2005].  In order to change the common causes of variation, or the “voice of the process,” it is necessary to completely re-
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engineer the process.  Re-engineering a process isn’t cheap.  In Dr. Wheeler’s words, "the focus should be on the dominant few, not 
the trivial many.” 
 
Even if the previously explained problems with applying SPC to engineering processes didn’t exist, this concept of continually 
improving the processes based on a quantitative understanding of the common causes of variation inherent in processes is simply a 
flawed understanding of the proper application of SPC. 

Conclusion 
As with most tools, SPC is useful when applied to the correct job.  SPC works very well when used to understand and improve highly 
repetitive processes, that is processes which have fair amount of consistency with regard to their inputs and processing elements such 
as manufacturing processes.  As should be evident by the problems described within this article, the usefulness of applying SPC to 
human intensive, knowledge intensive processes like engineering processes is questionable at best.  Yes, with enough effort and 
determination, one can drive a nail with a screwdriver, but that might not be the most efficient or effective use of resources. 
 
The CMMI contains a plethora of true best practices.  To be sure, the CMMI and its predecessor models have helped mature the 
software development community.  Like anything, there exists room for the CMMI to be improved.  In that spirit of continuous 
improvement, I have two recommendations to be considered for the next version of the CMMI: 
 
1. I recommend that SPC be de-emphasized.  Specifically, I recommend  the same approach that ISO 9001:2000 took:  “… shall 

include determination of applicable methods including statistical techniques, and the extent of their use” [ISO, 2000].  In other 
words, ISO 9001 is requiring that organizations think about their unique situations, determine what measurement and analysis 
techniques make best sense for them, and then apply them.  In this way, this ISO quality standard doesn’t mandate the use of SPC 
or any other measurement/analysis solution for that matter. 
 

2. I recommend removing the bit about processes being continually improved based on a quantitative understanding of the common 
causes of variation inherent in processes.  According to Dr. Donald Wheeler, this isn't the correct application of SPC.  Not even 
when applied to manufacturing processes. 
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