
Scalable Test Design using Ultra-Understandable Decision Tables

David Gelperin
Software Quality Engineering (www.sqe.com)

2425 Zealand Ave. N.
Golden Valley, MN 55427 U.S.A.

1-888-840-7563 +1-904-278-0707
sqegelp@aol.com

Abstract

This paper describes a scalable strategy that integrates
multiple techniques into a pragmatic test design approach
that honors budget and schedule constraints. The strategy
is most appropriate for large sets of behavior rules and
logical interpretations, where exhaustive testing is not
feasible. Ultra-understandable decision tables and their
supporting entity profiles [3] are used to describe behavior,
but the design strategy can be applied to any equivalent
information model. The scalable design process contains
five steps: (1) Estimate affordable upper bound on size of
test suite, (2) Select interpretations to be tested for each
condition in a behavior rule, (3) Construct a rule selection
strategy (4) Select foundation set of behavior rules to be
tested, and (5) Apply selected interpretations to foundation
set and remaining behavior rules. The operation of this
strategy is demonstrated on life-like software.

Keywords

Specification-based testing, black-box testing, model-
based test design, semi-formal models, ultra-
understandable decision tables, entity profiles, dependency
constraints, scalable test design, integrated test techniques,
min/max true interpretations, min/max actions, all possible
pairs, all effective values

1 Introduction

Although many individual test design techniques have
been described in the literature [1, 2, 4, 5] and most
descriptions council that the specified technique should be
used in conjunction with others, there is little published
advice on design strategies which both (1) integrate these
techniques and (2) scale-down to provide test suites that
respect budget and schedule constraints. Such strategies
are needed for large functional testing problems i.e., those
requiring several thousand tests for cost-effective
coverage. In this paper, we describe such a strategy and

demonstrate its operation on a life-like system. System
behavior is modeled by semi-formal decision tables and
supporting entity profiles, but can be applied to any
equivalent information model.

Using decision tables rather than state tables for behavior
specification implies behavior that is predominantly based
on properties of the immediate input. For example,
software containing input classification logic that makes
little reference to stored data exhibits such behavior.

2 Prior Work

None of the individual design techniques described in this
paper are new. Each has been explicitly or implicitly
described in the literature: min true interpretations is
described in [5], min/max actions is a form of boundary
value testing [4], all pairs is described in [2], and effective
values is implicit in Modified Condition/Decision
Coverage [1].

What is new is (1) the focus on the pragmatics of
integrating techniques and (2) the decision procedure for
selecting various combinations of techniques in order to
assure that the resulting test suite is as effective as possible
within budget and schedule constraints.

3 Scalable Test Design

The scalable design process contains five steps:

1. Estimate affordable upper bound on size of test suite
2. Select interpretations to be tested for each condition in

a behavior rule
3. Construct rule selection strategy
4. Select foundation set of behavior rules to be tested
5. Apply selected interpretations to foundation set and

remaining behavior rules

We illustrate steps 2 through 5 with an incomplete, naïve
example based on an actual operational system. The
reader should quickly review the system described in the
appendix and may wish to design a test suite using their
current methods before reading the worked out example.

http://www.sqe.com

3.1 Estimate Upper Bound

The goal of suite bound estimation is to provide guidance
to design decisions. This is not only to assure that the test
suite respects the budget and schedule, but also to assure
that candidate tests are not rejected because of phantom
constraints.

Bounding the size of a test suite is an exercise in
determining which order of magnitude is “too large”. Is it
ten, one hundred, one thousand, ten thousand, or one
hundred thousand tests? An order of magnitude bound can
be refined when enough is known about both the cost and
time constraints and the cost and time requirements of each
test. Costs include those of test development, execution,
and maintenance. Time constraints include the time to
develop and the time to execute.

3.2 Select Interpretations

An interpretation for the conditional expression of a
behavior rule is the specific pattern of true and false
conditions that causes that rule to be applicable to a
situation. Interpretations can occur at multiple levels of
abstraction. For example, consider the behavior rule:

Jane stays at home when the weather is very bad (C1)
or she feels very sick (C2)

and the (condition definition for) weather is very bad
when it is very cold (C1a) or snowing very hard (C1b)
or raining very hard (C1c).

At the top level of abstraction, there are four possible
interpretations for the rule’s compound condition since C1
and C2 are independent. Of these interpretations, the
compound condition is True for three of them (i.e., Jane
stays at home) and False for the other as follows:

T1 – the weather is very bad and Jane feels very sick
T2 – the weather is very bad and Jane does not feel very
sick
T3 – the weather is not very bad and Jane feels very sick
F1 – the weather is not very bad and Jane does not feel
very sick

At the level of abstraction involving the definition of “the
weather is very bad”, there are eight interpretations, but
only five are possible due to real world constraints. Of
these five, the weather is very bad is True for four of them
and False for the other as follows:

T1 – it is very cold and it is snowing very hard and (it is
not raining very hard)
T2 – it is very cold and it is not snowing very hard and (it
is not raining very hard)
T3 – it is not very cold and it is snowing very hard and (it
is not raining very hard)
T4 – (it is not very cold) and (it is not snowing very hard)
and it is raining very hard
F1 – it is not very cold and it is not snowing very hard and
it is not raining very hard

Each of the conditions in parenthesis is True because of the
truth of one of the other conditions in the interpretation.

Combining these two levels, there are ten possible
interpretations for the extended conditional expression of
the behavior rule, nine Trues and one False.

Min/Max True Interpretations Strategy

We now define a selection strategy for use when the
number of true interpretations is too large. Consider
behavior rule 3 in the Pass Orders System Decision Table.

Rule
Order is:

Uncorrectable
[3]

Correctable
[10]

Valid [1]

Order is:
Unoverrideable

[1]
OVerrideable [1]
Authorized [1]

OTher [1]

Order is:
DOT [2]

(Derivative
Options
Trading)

Trader [2]

Order is:
Unassigned

[2]
Assigned

[1]

Receive
order

request &
assign id
& verify

order

Support

Pass
OK

orders
to

DOT,
Trader

3 Correctable OVerrideable Trader Unassigned X
correction
overriding
assignment

Trader

Designing a test involving this rule entails applying an
interpretation in which Order is Correctable. To determine

how many ways Order can be Correctable, we look at the
derived profile of Customer Order and find:

Object Name Compound
Attribute Name

Attribute Description Value Name Value Definition

Customer
Order

Correctness Validity of all fields,
but trader & authorizer

Correctable At05 & At06 valid, but at least
one of At02 through At04 and
At07 through At12 not valid

Therefore Order is Correctable when
 [Customer Identifier is valid]
and [Security Identifier is valid]
and [(Order Date is invalid) or (Order Time is invalid) or (Order Taker is invalid)

or (Order Type is invalid) or (Order Quantity is invalid)
or (Order Duration is invalid) or (Security Price Type is invalid)
or (Security Price Limit is invalid) or (Trade Payment Type is invalid)] .

If we assume that each condition in this definition has
exactly one way to be True and one way to be False, there
are 211 (= 2048) interpretations of which 29 – 1 (= 511) are
True and therefore 511 distinct ways in which Order can
be Correctable.

The minimum true interpretations strategy selects just
those interpretations in which exactly one of the disjuncts
in the disjunctive normal form of the conditional

expression is True. For Order is Correctable, there are 9
such interpretations.

The min/max true interpretations strategy includes
these interpretations plus one in which a maximum number
of disjuncts in the disjunctive normal form of the
conditional expression is True. This strategy applied to
Order is Correctable results in 10 interpretations of which
two are:

[Customer Identifier is valid]
and [Security Identifier is valid]
and [(Order Date is invalid)
and (Order Time is valid)
and (Order Taker is valid)
and (Order Type is valid)
and (Order Quantity is valid)
and (Order Duration is valid)
and (Security Price Type is valid)
and (Security Price Limit is valid)
and (Trade Payment Type is valid)]

[Customer Identifier is valid]
and [Security Identifier is valid]
and [(Order Date is invalid)
and (Order Time is invalid)
and (Order Taker is invalid)
and (Order Type is invalid)
and (Order Quantity is invalid)
and (Order Duration is invalid)
and (Security Price Type is invalid)
and (Security Price Limit is invalid)
and (Trade Payment Type is invalid)]

These are the results if each condition has only one way to
be True and one to be False. But, what if some conditions

have more than two options. For example, looking at the
definition of Order Quantity in the basic profile, we find:

Object Name Attribute
Name

Attribute
Description

Attribute
Identifier

Value Name Value
Definition

Customer
Order

Order
Identifier

Unique
identifier At01

Order
Quantity

Number of
security units
to be traded

At08 Valid 0 < value

Order Quantity is a numeric attribute whose value must be
greater than 0. Therefore, this attribute can be invalid by
being non-numeric or by being equal to 0. If just this
attribute has two distinct invalid outcomes, then the total
number of interpretations increases by 1024 to 3072, the
number of True interpretations increases by 256 to 767,
and the number of min/max interpretations increases by 1
to 11.

The min/max true interpretations strategy would be used
for each simple and compound attribute value associated
with the set of behavior rules. For the behavior rules of the
Pass Orders System, there are 11 such attribute values at
the top of the decision table.

3.3 Construct a Rule Selection Strategy

To support scaling, we describe two types of selection
criteria with options for each. The first set of options
entails output-oriented criteria and the second adds input-
oriented criteria. Each type of criteria includes the no
choice option. A rule selection strategy would be
constructed by choosing one option from each type.

3.3.1 Output-Oriented Criteria

In a set of behavior rules, each action is either conditional
(i.e., sometimes does not occur) or unconditional (i.e.,
always occurs). Output-oriented criteria focus on
conditional actions and their co-occurrences.

3.3.1.1 Output Option 1: Min/Max Actions + All
Possible Action Pairs

Following the approach to min/max interpretations, we
define a min/max actions criterion in an analogous
fashion. For each conditional action, the minimum actions
criterion selects one rule which has the smallest number of
co-occurring conditional actions. This selection may not
be unique. For each conditional action, the maximum
actions criterion selects one rule which has the greatest
number of co-occurring conditional actions. Again, the
selection may not be unique. The min/max actions criteria
combines these two approaches.

For the Pass Orders System, rules 1-2, 8-9, and 12-14
satisfy the minimum actions criterion, while rules 1-2, and
3-4 satisfy the maximum actions criterion. Therefore, the
set of 9 rules 1-4, 8-9, and 12-14 satisfies the min/max
actions criteria.

Some conditional actions can co-occur, while others can
not (e.g., support assignment and pass to DOT). The all-
possible action pairs criterion requires that all
conditional actions that can co-occur must be in the
selected set

For the Pass Orders System, rules 3-4 satisfy this criterion.
For other rule sets, this criterion would add rules to the
min/max actions set.

3.3.1.2 Output Option 2: Maximum Actions or All
Possible Action Pairs

If the set from option 1 is too large, one or both of these
criteria could yield an acceptable size set.

3.3.1.3 Output Option 3: All Risky Action Pairs

This criterion assumes that knowledge about failure-impact
or fault-likelihood risk is available to guide the selection
process and that most action pairs are not risky. This
criterion yields a smaller suite that is cost-effective as long
as the risk knowledge is accurate.

3.3.2 Input-Oriented Criteria

To define these criteria, we introduce the concept of
affective input values or conditions relative to a behavior
rule. Consider the following behavior rules:

Rule
Order is:

Uncorrectable
[3]

Correctable [10]
Valid [1]

Order is:
Unoverrideable [1]
OVerrideable [1]
Authorized [1]

OTher [1]

Order is:
DOT [2]

(Derivative
Options
Trading)

Trader [2]

Order is:
Unassigned

[2]
Assigned

[1]

Receive
order

request &
assign id
& verify

order

Support

Pass
OK

orders
to

DOT,
Trader

Pass NG
orders to

Head
Trader

1 Uncorrectable --- --- --- X Uncorrect
-able

10 Correctable Authorized
or OTher

Trader Assigned X correction Trader

14 Valid Authorized
or OTher

Trader Assigned X Trader

Note that Order is Correctable in rule 10 and that changing
this condition to either of its alternatives will change the
execution result in any correct implementation of these
rules. This is the test for value or condition affectiveness.
If changing a value or condition to any of its alternatives,
while holding all other conditional elements of the rule
constant, causes a change in the execution result, then the
original value or condition is affective relative to this rule.
Note that Order is Trader in rule 1 is not affective by this
test.

Now consider Order is Authorized in rule 10. This is also
not affective by this definition, since changing it to Order
is OTher yields the same execution result in any correct
implementation. However changing it to either Order is
Unoverrideable or Order is OVerrideable yields a different
result. To describe this situation, we speak of an affective
set of input values or conditions. In our example,
Authorized and OTher constitute an affective set. For

affective sets, changing to any alternative outside the set
changes the result, while changing to any alternative in the
set does not.

The definitions for affective values, conditions, and sets
hold for inputs affecting calculations as well as those
affecting selection.

3.3.2.1 Input Option 1: All Possible Affective Pairs +
All Effective Values

 Two values or conditions appearing in a behavior rule are
an affective pair if and only if they are each affective or a
member of an effect set in that rule.

The all-possible affective pairs criterion requires that
every pair which is effective somewhere in a set of
behavior rules must appear as an affective pair in the

selected subset. For the Pass Orders System, rules 2-4 and
10-13 satisfy this criterion.

The all effective values criterion requires that each value
or condition which is effective or a member of an effect set
somewhere in a set of behavior rules must appear and be
effective in the selected subset. For the Pass Orders
System, rules 1-3, 13, and 14 satisfy this criterion.

The combined criteria are satisfied by rules 1-4 and 10-13.
Note that including the effective values criterion adds rules
in which there is only one effective value and that value is
not contained in an affective pair in any rule.

3.3.2.2 Input Option 2: All Effective Values

If the set from option 1 is too large, using just the effective
values criterion could yield an acceptable size set.

3.3.3 Using the Criteria

If the total number of rules is well within the upper bound,
then all rules should be chosen. If there are “too many”

rules, then the choices must be scaled down to satisfy
budget and schedule constraints by choosing one option
from each type of selection criteria.

Choosing option 1 from both the input and output criteria
yields the largest foundation set produced by this method
when there are too many rules. For purposes of
illustration, we make this choice although the rule set is
clearly small enough to choose all rules.

3.4 Select Foundation Set

The next step is to choose the set of behavior rules to be
used as the foundation of the test suite. While test cases
may be based on rules outside the foundation set – as we
will see in the next section, every rule in the foundation set
will be the basis for some test.

In our example, we could just merge the rule sets from
each option 1 to yield 1-4 and 8-14. However, since some
of those rule selections were not unique, we find that 1-4
and 10-14 are sufficient to satisfy both criteria. This then
is our foundation set.

Rule
Order is:

Uncorrectable
[3]

Correctable
[10]

Valid [1]

Order is:
Unoverrideable

[1]
OVerrideable [1]
Authorized [1]

OTher [1]

Order is:
DOT [2]

(Derivative
Options
Trading)

Trader [2]

Order is:
Unassigned

[2]
Assigned [1]

Receive
order

request &
assign id
& verify

order

Support

Pass
OK

orders
to

DOT,
Trader

Pass NG
orders to

Head
Trader

1 Uncorrectable --- --- --- X Uncorrect-
able

2 Valid or
Correctable

Unoverrideable --- --- X Unoverride
-able

3 Correctable OVerrideable Trader Unassigned X correction
overriding
assignment

Trader

4 Correctable OVerrideable DOT (Trader Id is
empty i.e.,

unassigned)

X correction
overriding

DOT

10 Correctable Authorized
or OTher

Trader Assigned X correction Trader

11 Valid OVerrideable Trader Assigned X overriding Trader

12 Valid Authorized
or OTher

Trader Unassigned X assignment Trader

13 Valid Authorized
or OTher

DOT (Trader Id is
empty i.e.,

unassigned)

X DOT

14 Valid Authorized
or OTher

Trader Assigned X Trader

3.5 Apply Interpretations

The last step in our design process is to apply the selected
logical interpretations to the foundation set of rules and
perhaps others as well. We will not describe the entire

process for our example, but will illustrate the essential
elements of this design step.

We begin with the condition having the greatest number of
interpretations. In our example, this is Order is

Correctable. Let us assume that we have decided that
testing 10 distinct interpretations for this condition is
sufficient. Our problem is that there are only 4
opportunities to do this in the foundation set. We could
just replicate one or more of these 4 rules until we had 10
sites, but since we need 6 more tests anyway, we choose
new rules from outside the set in order to test more
behavior patterns. It turns out that rules 5, 6, and 8 also
provide opportunities, so we include them. We still need
to replicate 3 of these 7 rules to provide the remaining

sites. The choices made during the process of selecting
outside the foundation set or choosing which rule to
replicate may be influenced by the upcoming need to site
interpretations for other conditions – especially those with
large numbers.

We reapply this process to the interpretation with the next
greatest number until finally all selected interpretations
have been sited. This ends the process and provides our
suite of tests. An example of a final result is:

Test
Order is:

Uncorrectable
[3]

Correctable
[10]

Valid [1]

Order is:
Unoverrideable

[1]
OVerrideable [1]
Authorized [1]

OTher [1]

Order is:
DOT [2]

(Derivative
Options
Trading)

Trader [2]

Order is:
Unassigned

[2]
Assigned [1]

Receive
order

request &
assign id
& verify

order

Support

Pass
OK

orders
to

DOT,
Trader

Pass NG
orders to

Head
Trader

1 Uncorrectable
1

--- --- --- X Uncorrect-
able

2 Uncorrectable
2

--- --- --- X Uncorrect-
able

3 Uncorrectable
3

--- --- --- X Uncorrect-
able

4 Correctable
1

Unoverrideable --- --- X Unoverride
-able

5 Correctable
2

OVerrideable Trader
1

Unassigned
1

X correction
overriding
assignment

Trader

6 Correctable
3

OVerrideable DOT
1

(Trader Id is
empty i.e.,

unassigned)

X correction
overriding

DOT

7 Correctable
4

OVerrideable Trader
2

Assigned X correction
overriding

Trader

8 Correctable
5

Authorized Trader
?

Unassigned
2

X correction
assignment

Trader

9 Correctable
6

OTher DOT
2

(Trader Id is
empty i.e.,

unassigned)

X correction DOT

10 Correctable
7

OTher Trader
?

Assigned X correction Trader

11 Correctable
8

Authorized Trader
?

Assigned X correction Trader

12 Correctable
9

OTher Trader
?

Assigned X correction Trader

13 Correctable
10

Authorized Trader
?

Assigned X correction Trader

14 Valid OVerrideable Trader
?

Assigned X overriding Trader

15 Valid OTher Trader
?

Unassigned
?

X assignment Trader

16 Valid Authorized DOT
?

(Trader Id is
empty i.e.,

unassigned)

X DOT

17 Valid Authorized Trader
?

Assigned X Trader

If the number of tests grows too large, we must reevaluate
our decisions about selecting interpretations, constructing
the rule selection strategy, or both.

References

[1] John Joseph Chilenski and Steven P. Miller.
 Applicability of Modified Condition/Decision
 Coverage to Software Testing. Software Engineering
 Journal, 9(5):193-200, September 1994.

 [2] David Cohen, Siddhartha Dalal, Jesse Parelius, and
 Gardner Patton. The Combinatorial Approach to
 Automatic Test Generation. IEEE Software 13(5):
 83-88 September 1996

 [3] David Gelperin. Ultra-Understandable Logic Tables.
 submitted for publication and available at
 www.stqe.net in the interest areas - software testing –
 tools/automation – library

[4] Glenford Myers. The Art of Software Testing. Wiley
 1979

 [5] E. Weyuker, T. Goradia, and A. Singh. Automatically
 generating test data from a Boolean specification.
 IEEE Transactions on Software Engineering,
 20(5):353-363, May 1994

Appendix -- Elements of the Pass Orders System Logic Model

1. Abstract of Pass Orders System

This system is a partially automated front-end to a set of financial trading systems. The system handles orders for stock and
bonds as well as options (e.g., puts and calls).

The system is fed by electronic and manual order sources and sends output to Traders, Head Traders, and the Derivative
Options Trading (DOT) system.

It interacts with humans who provide manual orders as well as fix, authorize, or assign the electronic or manual orders.

The system:
1. accepts either new manual, new electronic, or modified orders,
2. assigns an order number to new orders,
3. verifies each order,
4. supports the fixing of invalid or unauthorized orders that can be fixed,
5. supports the assignment to a Trader of proper, but unassigned, orders for stocks or bonds,
6. rejects uncorrectable or unoverrideable orders to a Head Trader,
7. passes proper options orders to the DOT system, and
8. passes proper, assigned orders for stocks or bonds to a Trader

2. User Population Diagram in Pass Orders System Logic Model

A User Population Diagram

Pass Orders
System

Pass Orders
System

Electronic Order
Source(s) -- P

Broker DOT
System(s) -- R

Manual Order
Provider -- I

Order
Fixer -- I

Order
Authorizer -- I

Order
Assignor -- I

Head
Trader -- R

������
������

�����
�����

�������
�������

������
������

Trader -- R

http://www.stqe.net/

3a. Basic Profile of Customer Order in Pass Orders System Logic Model

Object
Name

Attribute
Name

Attribute
Description

Attribute
Identifier

Value Name Value
Definition

Customer
Order

Order
Identifier

Unique
identifier At01

Order Date Date order
taken At02

Order Time Time order
taken At03 Valid

0 ! value
! 2359

Order Taker Id of order
taker At04

Customer
Identifier

Unique
identifier At05

Security
Identifier

Unique
identifier At06

Order Type Code for type
of order At07

Buy
Buy to Cover

Sell

Buy
BuyC
Sell

Order
Quantity

of units to be
traded At08

Valid 0 < value

Order
Duration

Code for time
order is valid At09

Day
‘til Canceled
Fill or Kill

On the Open

Day
TCan
ForK
Open

Security Price
Type

Code for type
of price At10

Market
Limit

Stop Loss

Mark
Limt
Stop

Security Price
Limit

Bound on
trade price At11

Trade
Payment Type

Code for type
of payment At12

Cash
Margin

C
M

Trader
Identifier

Unique
identifier At13

Assigned Not Empty

Authorizer
Identifier

Unique
identifier At14

3b. Derived Profile of Customer Order in Pass Orders System Logic Model

Object Name Derived
Attribute Name

Attribute
Description

Value Name Value Definition

Customer
Order

Correctness
Validity of all

fields, but trader
& authorizer

Valid At02 through At12 all valid

Correctable
At05 & At06 valid, but at least
one of At02 through At04 and
At07 through At12 not valid

Uncorrectable At05 or At06 not valid

Authorization
Order

authorization
situation

Authorized At14 is (non-empty & valid)

Overrideable
Order is valid and At14 is

invalid, but order value < 50K

Unoverrideable
At14 is invalid,

but order value " 50K
Other At14 is (empty & valid)

Assignment
Assignment to
trader situation

Assigned At13 is (non-empty & valid)

Unassigned
At13 is (non-empty & invalid)

or empty

3c. Basic Profile of Security in Pass Orders System Logic Model

Object
Name

Attribute
Name

Attribute
Description

Attribute
Identifier

Value Name Value
Definition

Security Security
Identifier Unique identifier At01
Security
Type

Code for type of
security At02

Bond / Stock
Put / Call

BOND / STCK
PUT / CALL

Exchange Place to trade At03
NYSE
Amex
NASDAQ
Non-US

NYSE
AMEX
NASD
NOUS

Recent Price Price of a unit At04

3d. Derived Profile of Security in Pass Orders System Logic Model

Object Name Derived
Attribute Name

Attribute
Description

Value Name Value Definition

Security Derivative? Principal or
Derivative Type

of Security
Derivative Security Type is Put or Call

Principal
Security Type is Stock or

Bond

3e. Condition Dependency Constraints in Pass Orders System Logic Model

Implying Conditions Dependency
Type

Implied Conditions

Security is Derivative !" Not (Trader is Assigned)

4a. Basic Reaction Dictionary in Pass Orders System Logic Model

Generic Name Specific Pre-Conditions Post-Conditions
Receive order
request

Electronic Electronic order submitted Electronic order received
& Electronic count up 1

Manual Manual order submitted Manual order received &
Manual count up 1

Modified Modified order submitted Modified order received
Assign id Electronic or Manual Order received Order id assigned
Verify order Order id assigned or

Modified order received
[Order is valid EOR
Order is correctable EOR
Order is uncorrectable] &
[Order is authorized EOR
Order is other EOR
Order is overrideable EOR
Order is unoverrideable] &
[Order is assigned EOR
Order is unassigned] &
[Order is trader EOR
Order is DOT]

Display problem
order

Invalid Order is correctable Order is displayed
Unauthorized Order is overrideable Order is displayed
Unassigned Order is trader & unassigned Order is displayed

Pass order
Trader Order is valid, (authorized or other),

assigned, and trader
Trader count up 1

DOT system Order is valid, (authorized or other), and
DOT

DOT count up 1

Head Trader Order is uncorrectable or unoverrideable Rejected count up 1

4b. Derived Reaction Dictionary in Pass Orders System Logic Model

Derived Reaction Basic Reactions
Support correction Display invalid order

Receive modified order request
Verify modified order

Support overriding Display unauthorized order
Receive modified order request
Verify modified order

Support assignment Display unassigned order
Receive modified order request
Verify modified order

5. Ultra-Understandable Decision Table in Pass Orders System Logic Model

Rule
Order is:

Uncorrectable
[3]

Correctable
[10]

Valid [1]

Order is:
Unoverrideable

[1]
OVerrideable [1]
Authorized [1]

OTher [1]

Order is:
DOT [2]

(Derivative
Options
Trading)

Trader [2]

Order is:
Unassigned

[2]
Assigned [1]

Receive
order

request &
assign id
& verify

order

Support

Pass
OK

orders
to

DOT,
Trader

Pass NG
orders to

Head
Trader

1 Uncorrectable --- --- --- X Uncorrect-
able

2 Valid or
Correctable

Unoverrideable --- --- X Unoverride
-able

3 Correctable OVerrideable Trader Unassigned X correction
overriding
assignment

Trader

4 Correctable OVerrideable DOT (Trader Id is
empty i.e.,

unassigned)

X correction
overriding

DOT

5 Correctable OVerrideable Trader Assigned X correction
overriding

Trader

6 Correctable Authorized
or OTher

Trader Unassigned X correction
assignment

Trader

7 Valid OVerrideable Trader Unassigned X overriding
assignment

Trader

8 Correctable Authorized
or OTher

DOT (Trader Id is
empty i.e.,

unassigned)

X correction DOT

9 Valid OVerrideable DOT (Trader Id is
empty i.e.,

unassigned)

X overriding DOT

10 Correctable Authorized
or OTher

Trader Assigned X correction Trader

11 Valid OVerrideable Trader Assigned X overriding Trader

12 Valid Authorized
or OTher

Trader Unassigned X assignment Trader

13 Valid Authorized
or OTher

DOT (Trader Id is
empty i.e.,

unassigned)

X DOT

14 Valid Authorized
or OTher

Trader Assigned X Trader

	Scalable Test Design using Ultra-Understandable Decision Tables
	
	
	
	
	
	David Gelperin
	Software Quality Engineering (www.sqe.com)

	Abstract
	1 Introduction
	2 Prior Work
	3 Scalable Test Design
	
	3.1 Estimate Upper Bound

	Therefore Order is Correctable when
	
	3.3.1 Output-Oriented Criteria
	3.3.1.1 Output Option 1: Min/Max Actions + All Possible Action Pairs
	3.3.2 Input-Oriented Criteria
	3.3.3 Using the Criteria
	The next step is to choose the set of behavior rules to be used as the foundation of the test suite. While test cases may be based on rules outside the foundation set – as we will see in the next section, every rule in the foundation set will be the bas

	In our example, we could just merge the rule sets from each option 1 to yield 1-4 and 8-14. However, since some of those rule selections were not unique, we find that 1-4 and 10-14 are sufficient to satisfy both criteria. This then is our foundation se
	
	3
	3.5 Apply Interpretations
	Appendix -- Elements of the Pass Orders System Logic Model

	User Population Diagram in Pass Orders System Logic Model
	Date order taken
	Time order taken
	Id of order taker
	Unique identifier
	Unique identifier

	Other
	Assigned
	
	
	
	
	
	Dependency Type

	Security is Derivative

	Receive order request
	Assign id
	Verify order
	Display problem order
	Pass order

