
Software Testing

British Computer Society 75

T
here is incessant pressure to

supply reliable systems at reduced

cost and increased profitability.

Object-oriented development has

also made it easier to develop components

iteratively in isolation, for example data-

base access procedures can be developed

independently from the application or the

user interface.

Traditional testing methods attempt to

improve re l iab i l i ty by debugging the

system using a combination of reviews and

unit test ing fol lowed by independent

system and integration testing.

The later stages of verification and vali-

dat ion test ing (acceptance and pi lot

programmes) should continue to improve

reliability until the system is deemed reliable

enough to be implemented. This applies

whatever type of development lifecycle –

waterfall, RAD etc. – is used.

How do we measure reliability?

There are many indicators of reliability.

Some are listed below but the supplier,

client or end-user should determine what

is meaningful for the system under devel-

opment. A good start can often be made

by considering what criteria are used to

measure the reliability of an existing sys-

tem. One common thread throughout is

the need for some ratio or reliability index

based on problems found, so problem or

incident collection and management is

a key requirement for reliability measure-

ment . My adv ice i s to f ind as many

measures as possible, plot them over time

and look for a trend. These measurements

could well be used as part of the accept-

ance criteria.

Some potential measurements to collect

over fixed time periods:

l Tests executed per problem;

l Regression errors found;

l Time testing per problem;

l Database accesses per problem;

l Processor cycles used per problem.

Use these indicators with caution; we

are looking for trends and small samples

can give misleading results.

What often happens

During system development the schedule

is affected by changes; examples include

user requirements, technology, design, user

interface, interaction with other systems

and changes to deadlines.

This results in pressure from project

personnel to compromise the agreed test

process. Often test stages are overlapped,

testing is deferred into later test stages

(which were never designed for that pur-

pose) and worst of all some testing is just

abandoned. Everyone becomes a ‘test

expert’ as time and budget pressures take

over, resulting in poor quality of testing and

poor reliability. The end result is often an

unreliable system that is incomplete, does-

n’t meet specification, doesn’t perform to

expectations, has poor security and is

difficult to manage and maintain.

As testers we have to accept that

changes will occur whether we like it or

not. Trying to impose strict discipline in the

early stages of development only alienates

the rest of the project disciplines, so why

not accept the inevitable and, as a team,

plan for this change? However there will

be some rigour required in the process if

we are to maintain and improve reliability,

particularly toward the later stages of

testing where any change can have serious

consequences.

How could we solve these problems?

If we accept that this situation is going to

arise then we should have a test strategy

that assumes that change is inevitable. It

should define a change process that allows

the plan to be flexible enough to cope with

unforeseen changes that could adversely

affect reliability.

The key to reliability improvement lies in the

code and unit test stage of development.

What if we could improve by continually

testing and retesting the system compo-

nents as they are developed?

The effect of change could be seen and

dealt with immediately, and errors could

be fixed early, reducing the risk of poor

reliability resulting from fixing the backlog

o f e r ro r s l a t e i n t h e p ro j e c t c y c l e .

Regression failures would immediately

show any process failure or unexpected

effects on the system. This maintains the

reliability of the components developed so

far and should improve the system reliabil-

ity as a whole as further components are

developed and integrated together.

The cumulative set of regression tests

would continually show that the components

delivered to system test are at a known level

of reliability and integrate together.

This solution cannot be achieved using

conventional manual testing due to cost,

time and effort. The answer lies in the

automation of the testing. However using

Climbing Mount
Reliability
Senior Consultant at nFocus Sam Clarke describes the approach

used by nFocus to improve and maintain reliability through and

beyond the project development lifecycle.

Everyone becomes a ‘test expert’ as time and
budget pressures take over, resulting in poor
quality of testing and poor reliability.

 Page 75

Software Testing

British Computer Society 77

record and playback tools in a conven-

tional manner relies on a number of factors:

l The system must be complete and

stable enough to allow the tool to drive

the tests;

l Test analysts will need in-depth knowl-

edge of the tool set;

l The scripts need continual maintenance;

l T h e t o o l s t e n d n o t t o b e a b l e t o

drive existing application or database

harnesses.

A solution

I f we can abstract the creation of the

automated tests from the test input, the

restrictions stated above are significantly

reduced. Figure 1 shows how this process

works. We should consider the system

under test as consisting of areas of func-

tionality: each area consists of separately

developed testable components, which

integrate together to deliver the business

function. These areas comprise user inter-

face, application, transport, database and

batch processes.

Each area can be subdivided into com-

ponents that can be developed and tested

independently, e.g. a Web page, a Web

service or method, a database stored pro-

cedure etc. Eventually enough components

can be integrated together to deliver a

piece of business functionality.

The tests are abstracted away from the

tool set (harness or record and playback

tool) to a standard, understandable and

easy-to-use form such as a spreadsheet.

The spreadsheets can then be used by an

automation framework to generate scripts

dynamically for whatever tool or harness

that is in use.

The entries in the spreadsheet become

the test assets, with the automation scripts

being discarded after each execution. This

al lows harnesses and toolsets to be

replaced or enhanced as necessary with-

out affecting the tests, the only changes

required being to the generation process

used by the automation framework.

The order of component delivery is not

critical as each set of tests will be built at

the same time as the component is devel-

oped, however the delivered component

must be put under change control after

delivery. Although this may seem rigid, it is

in fact quite an agile process, providing

the test analysts and developers have a

good rapport and the change and quality

process is effective.

Our experience is that the development

organisation tends to be reticent about the

approach until they see the benefits of the

overnight ‘best so far’ build test running

clean or, if failing, immediately being able

to pinpoint the error.

The process

A typical instance of the iterative process

is outlined below:

l Agree the areas and components to be

delivered;

l Develop and white box unit test compo-

nent;

l Deliver to the test rig;

l Run the automated regression tests;

l Report any regression errors;

l Agree if the error is severe enough to

reject the build;

l Retest any outstanding errors from the

last cycle;

l Run the automated black box tests for

the component(s);

l Report any problems;

l Add successful tests to the regression

test set ready for the next iteration.

On larger projects you may need to select

a subset, for example build verification and

execute the full set overnight or over a

weekend.

As more components are delivered it

becomes possible to str ing together

self-contained business process tests and

demonstrate reliability improvement.

Additional benefits

Better use of scarce test resource:

l Tests a re kept in a s tandard fo rm

enabling efficient use of test resource

across projects;

l Tool independence;

l Reuse of existing harnesses and drivers

by the test team;

l Tests are self-documenting;

l Best use of technically-skilled resource.

The automated tests can be used for

other purposes:

l Verification of system installation;

l Demonstrating the system is working to

specification;

l Showing changes to the production

system or infrastructure have not had an

adverse effect;

l Showing that future changes to the

system have not had an adverse effect.

Conclusion

The ability to continually execute a set of

automated regression tests is the key to

maintaining and improving reliability while

preventing the over-run of the later stages

of testing due to increased debugging

effort. The approach of using an automa-

tion framework frees up the tester to

concentrate on testing. In addition prob-

lem determination time is reduced as any

failure can be quickly isolated to a com-

ponent. n

For further information, please cont-

act nfocus on te l : 01293 582380,

emai l : info@nfocus.co.uk or v is i t

www.nfocus.co.uk

A

U

T

O

M

A

T

I

O

N

F

R

A

M

E

W

O

R

K

TEST

HARNESS

TRAN SP ORT CO M PON ENTS

U SER

INTERFACE

TEST TOOL USER INTER FAC E COMP ON ENTS

TEST

HARNESS

APPLICATION COMP ON ENTS

TEST

HARNESS

DATABASE C OM PON ENTS

TEST

HARNESS

BATC H COMPONENTS

Figure 1.

The tests are abstracted away from the tool
set (harness or record and playback tool) to
a standard, understandable and easy-to-use

form such as a spreadsheet.

Page 77

 For further information, please contact

 nFocus on tel: 0870 242 6235, email:

 info@nfocus.co.uk, or visit

 www.nfocus.co.uk

