
How to Improve Your Software Release Management Process –
A Real-time Case Study

Software projects take investment, support, development and a lot of hard work and
dedication. Good release management practices ensure that when your software is
built, it will be successfully deployed to who want to use it. You have the opportunity to
retain existing customers and hopefully to win new clients.

One of my major clients had a problem. It needed to implement business critical
releases on time, which required it to reengineer its billing and account management
systems.

These systems had to be in place within three months, this is highly business critical to
the client and company as well. But the release management processes were poor, and
it was extremely problematic and inconsistent.

The company hired me to help deliver the release process within the time constraints
and to turnaround a failing release management process. Within four months, we'd
released both the pending releases and two scheduled releases of the reengineered
applications.

And our team established a clear-cut and lightweight release management process to
ensure that future releases would happen on time and to the required quality. We
followed these below steps to overcome from the critical situation to systematic process
implementation stage within 6 months.

Step-1 Understand the existing shape of release management.
We can't begin to repair something without understanding what it is, and how and where
it is broken. The first step in improving our Business Unit’s release management system
was to form a detailed picture of the current release process with a number of walk-
through sessions and gap analysis with key individuals involved in their respective
technologies and towers.

From this gap analysis we determined that our starting point was pretty bad. When we
joined the project, there was no proper documentation available, software builds still
waiting to be deployed few weeks after being completed, Test environments were
limited and not managed, so they were regularly out of date and could not be used.
Worse still, it took a relatively long time to turn around new environments and to refresh
existing ones.

When we arrived on the scene, regression testing was taking up to two months to
manually execute. It was usually dropped, unit testing was performing developer’s
individual machines, there was no such version control mechanism and folder structure
for before unit testing and after unit testing, this kind of process significantly reduces the
quality of any software that made it to release.

Overall, morale and commitment were very low. These people had never been helped
to deliver great software regularly, and it had worn them down.

Step-2 Initiated a regular release process cycle.
Once we got a picture of the current state of the process, we set about establishing a
regular release process it is vital because. If the development team is the heart of the
project, the release or configuration life cycle is its heartbeat.

In determining how often to release into production, we had to understand how much
nonfunctional testing was needed and how long it would take. This project required
regression, performance and integration testing as well, It creates an opportunity to
meaningfully discuss nonfunctional testing that the software may need. It announces a
timetable for when stakeholders can expect to get some functionality. If they know that
functionality will be regularly released, they can get on with agreeing what that
functionality would be.

It creates a routine with which all teams can align (including marketing and
development) and It boosts customer’s confidence and trust that they can order
something and it will be delivered on time. Your release cycle must be as accurate as
you can make it, not some pie-in-the-sky number that you made up during lunch. Before
you announce it, test it out. There is nothing worse for a failing release process than
more unrealistic dates!

Firstly we started out by suggesting a weekly release cycle. That plan proved unfeasible
because of few technical issues at client’s end, the client's database environment could
not be refreshed quickly enough. Secondly we tried two-week release cycles.

There were no immediate resistance from the onshore and offshore teams, but it failed
the first two times! In the end, two weeks was an achievable cycle, once we overcame
some environment turnaround bottlenecks and automated some of the tests. Here is
what I mostly applied few release management techniques which I adopted during my
past experiences.

Finally we established a cycle whereby, every two weeks, production-ready code from
the development team was put into system test. Then two weeks later, we released that
code into deployment and production environments.

Here the development teams have learned a lesson that “your release cycle is not about
when your customer wants the release. It's about when you can deliver it to the desired
level of quality”. Our customers supported our release cycle because we engaged them
in determining the cycle. There is only one consideration in determining the release
regularity.

Step-3 Initiated lightweight processes in place.
Review your results regularly and then do some more. Repeat this cyclic approach until
you get the results you want. This is what we called a lightweight release process.

Lightweight processes are those that do not require lengthy documents, approvals or
endless meetings to get agreement. They usually require only the minimum acceptable
level of inputs and outputs. Underpinning this approach is the tricky issue of
documentation. You need to record what you did and how you did it. Otherwise, what do
you review and how do you improve?

I don't mean the kind of documentation that puts its readers to sleep. I mean
documentation that people can read and act on simply without any dependency from
other geographically distributed teams. The release management team uses their
experience to create minimal but effective documentation of what onsite or offshore
leads or delivery managers were agreeing to build in every cycle of work. They record
what they built, how they built it and what was required to make it work, we saw the
value in this approach and rolled it out to everyone else involved in the process.

Initially, we suggested a sequence of tasks to release the software we got from the
development teams. It covered how we took delivery from the source control
management tools, what packages would be called and how each element (executable
code, database scripts, etc.) would be run and on which platforms. Then we did a mock
run, using dummy code for each element. We tested our sequence, documenting what
we did as we did it, this formed the basis of the installation instructions.

The next step was to get the people who would be deploying the real release to walk
through another mock run, using only our documentation. They extended, amended and
improved our instructions as they went through. The process became a more inclusive
one where everyone contributed to the documentation; since they'd been part of its
definition, the process became more widely adopted with better quality.

After each release, we reviewed the process. We examined the documentation and
identified changes made during the release. Every time, we looked at how the
documentation could be improved and fed the enhancements back into the process.
This is how we tested them early and reviewed them regularly.

Step-4 Established a release infrastructure early.
Your release infrastructure is anything that needs to be in place to deploy the software
and to enable users to use it, Your obligation to the customer is not just that you build
great software, it is that it's timely available for them to access and use.

Crucial to getting a good release process is figuring out what you need to have in place
to make it available to the customer, before the development team is done building the
software, the release team ensures that the infrastructure covers the hardware, storage,
network connections, bandwidth, software licenses, user profiles and access
permissions.

Human services and skills are part of the release infrastructure, for example, if you
require specialist software installed and configured, it's not smart to exclude the
availability or cost of getting such skills into your infrastructure plan.

It is critical that as a release manager you discover, as early as you can, hidden
bottlenecks in procuring the required hardware or the missing skills (say, to configure
secure networks from the network team). You need to resolve them before they hold up
your delivery.

This is not an easy task. We strove to get our release infrastructure in place as soon as
we started on the project. Even after six weeks' lead time, we were still waiting on
specialist memory and hard drives for the test servers!

Step-5 Automated and normalized as much as we can.
Automation enables you to do repetitive tasks without typing up valuable human
resources, normalizing ensures that your automation's inputs and outputs are consistent
every time. I found some other serious errors, a new package was not guaranteed to be
the same as the last one; in fact, it was not even guaranteed to be the software they
had been building, much less guaranteed to work! It often took the tech staff days to
create a package with the features they were delivering in a structure that could be
deployed.

We immediately drew up a structure and acceptance criteria for the deployable package
the team was delivering to the release team and helped them standardize its packaging.
This triggered the implementation of automated processes to build the software in that
consistent structure for every release point.

Suddenly, the packaging of the software for release was not even an issue. Because we
had automated the verification of the acceptance criteria, for example, that code must
be unit tested prior to delivery and test deployed to ensure that it could be deployed; we
had guaranteed its executability. As a result, we were able to package, version, and test
and deploy finished code with a single command in a very short time.

But automation did not stop there. With each development cycle, we had even more
regression tests to do. The existing regression tests would have taken three months to
manually execute; as a result, the releases were never properly tested.

Our newly established release cycle found this gap and meant that a release had to be
regression, performance and integration tested in two weeks for us to be able to release
it into production. We could overcome the different types of testing (integration and
performance) by having separate environments for each type. But how would we
accommodate three months of regression tests into a two-week window?! Here exactly I
applied my most favorite technique which I applied many times.

First, we initiated a prioritization exercise. The customer identified the highest-priority
regression tests: the minimum they would accept as proof that the old functionality still
worked. Then we set about automating this set. Subsequent acceptance tests also
became automated, ensuring that we could regression test every release in hours rather
than days.

Step-6 Established positive expectations.
If getting software released is important to you, don't keep it a secret. Release
management teams improved their commitment to deliver the software release when
they knew it was important.

We backed up this importance by establishing that the designated release manager
would expect the software to be ready when the teams agreed it would be ready. We
got the program manager to explain to the teams why the release was important.

We requested that the software delivered by the development teams conform to a
standard (versioned, tested, documented and packaged); we established that we would
request this standard package for every release cycle. We needed to explain why we
wanted the software in this way (it made our automated process easier and more
consistent) and we integrated the team's feedback into the process.

Establishing positive expectation is a really good way to empower everyone involved in
the process. We were not given any executive authority, so there was no fear of
sanction or sacking. Instead, we tapped into the power of positive expectation to get
people on board to help us improve the release process. We had individuals making key
decisions which they never felt able to make before.

Conclusion
No matter how much you spend on hardware, software and fancy processes, without
the commitment of team members you will not enjoy sustainable success in releasing
your software.

Our basic assumption is that people are inherently interested in doing and learning good
work. If you want the people in your teams to care about your product and about doing a
good job, you have to first demonstrate that you care about what is important to them.
From the outset of the project, we formed excellent rapport with everyone on the teams,
based on mutual respect and understanding.

When we came to the project we found a general sense of apathy. It took a lot of
relationship building and investment of time and positive affirmation to get many people
back to a point where they cared about delivering personal value to the process, release
management is a really important part of any IT organization and is not often given the
attention it deserves.

There are lots of other great hints, tips and observations I can share about my
experience of straightening out the release process of this medium-size enterprise. But
these are the few most important for us in this particular case, though I suspect that
they are pretty good ideas for any case.

Last but not least, a good release management process takes hard work, resolve and
great communication; however, the greatest skill is the ability to review, learn and adapt

different techniques over a period of time, because every organization is unique, every
product, project, service delivery life cycles are unique, unless a release manager adapt
a few techniques of his own he can’t provide a good release management process to
his organization.

This kind of problems usually I have seen almost all my new companies, configuration
and release managers are like an unsung hero’s in their respective field, until unless the
project’s release activities are became worse, many organizations never think about the
need of experienced (not knowledgeable) full time release managers, this kind of
approach should change and need of specialist is very much required in any filed to
reap their business.

--- End ---

