
© 2009 Gary A. Gack Page 1

An Economic Analysis of Software Defect Removal Methods

Synopsis

Objectives

Caution

By Gary A. Gack

This paper, based on my forthcoming book
, explores the economic consequences of

alternative strategies for software defect detection and correction during the software
development life cycle. Most published analyses have relied on “cost per defect” as an
index for comparison of alternatives. This metric has been shown to be fundamentally
flawed as it fails to differentiate between fixed and variable costs and because it
effectively penalizes high quality software. Cost per defect necessarily increases as
incoming quality improves, regardless of defect detection strategies employed.

Most published papers on this topic include many unstated assumptions. This paper
employs a set of parametric models that explicitly state the assumptions incorporated in
the models. I invite readers to substitute alternative parameter values to explore
consequences of different assumptions or experience. A hypothetical “case study” is
presented to illustrate the impact of different assumptions. These models are available
from the author on request, subject only to a good faith agreement to share
assumptions and conclusions.

This paper and the models it uses are intended to help software organizations
determine an optimal combination of defect containment methods and resource
allocation. These models provide a mechanism to forecast the consequences of
alternative assumptions and strategies in terms of both cost (in person months) and
delivered quality (measured by “Total Containment Effectiveness” – TCE – i.e., the
estimated percentage of defects removed before software release to customers).

As George Box said, “All models are wrong – some are useful.”

It is hoped the reader
will take away a thought process and perhaps make use of this or similar models using
parameter values appropriate and realistic in the intended context. It is widely
recognized that all benchmark values are subject to wide (and typically unstated)
variation. Many parameter values will change significantly as a function of project size,
application domain and other factors.

Managing the “Black Hole”: The
Executive’s Guide to Software Project Risk

This paper uses model
parameters taken from a variety of public sources, but makes no claim that these
parameter values are valid or correct in any particular situation.

© 2009 Gary A. Gack Page 2

Overview

Alternative Appraisal Strategies

The complete model includes 5 tables – the first 4 include user-supplied parameters
and calculate certain fields based on those parameters. The fifth table summarizes the
results of the other four. We will look at the summary first, and then get into the details
upon which the summary is based.

The summary charts, displayed graphically below, include five scenarios all based on
an assumed size of 1000 function points. The first three scenarios assume defects are
“inserted” at US average rates according to Capers Jones

(2009, p.69) – a total of 5.00 defects per function point, including bad fixes
and documentation errors. Scenarios four and five respectively reflect results reported
by higher maturity groups in which defects inserted are reduce to 4 per function point in
scenario 4 and 3 per function point in scenario 5.

Scenario 1 represents a “test only” scenario in which no “pre-test” appraisals, such as
formal inspections, are used. Scenarios two and three introduce certain pre-test
appraisals, including inspections and static analysis, and in scenarios 3-5 discontinue
some test activities. Other model parameters, discussed later, remain constant across
all scenarios. Inspection percentages indicate the portion of the work product inspected.

Appraisal Type
Scenario

1 2 3 4 5
Requirements Inspection 50% 75% 75% 75%

Design Inspection 30% 50% 50% 50%

Code Inspection 20% 20% 20% 20%

Static Analysis x x x
Unit Test x x

Function Test x x
Integration Test x x x x x

System Test x x x x x
Acceptance Test x x x x x

Note that static analysis can only be used for certain procedural languages such as C
and Java.

Two summaries are developed – the first shows the impact of alternative appraisal
strategies on delivered quality as measured by “Total Containment Effectiveness”, i.e.,
the percentage of defects removed prior to delivery of the software. In this illustration a
“best” mix of appraisal activities (scenarios 3-5) reduces delivered defects by about 75%
compared to a test-only approach (scenario 1) typically used by average groups.

Software Engineering Best
Practices

© 2009 Gary A. Gack Page 3

The second summary shows the impact of alternative appraisal strategies on “non-
value-added” effort as defined in the Cost of Quality framework – i.e., all appraisal and
rework effort is by definition “non-value-added” (NVA). Although certainly a “necessary
evil” our goal will always be to minimize these costs.

In this illustration a “best” (scenario 3) mix of appraisal activities reduces total NVA effort
(including both pre- and post-release effort) by 44% compared to a test-only approach
typically used by average groups (66.6 person months in scenario 3 vs. 119.9 in
scenario 1). More mature organizations, as a result of lower defect insertion, can reduce
NVA by an additional 30% (to 46.3 in scenario 5 vs. 66.6 in scenario 3).

© 2009 Gary A. Gack Page 4

Supporting Details
As indicated earlier, 4 tables containing various parameters are used to develop the
summary forecast.

Table 1: The Defect Containment Model – identifies appraisal steps to be used in
a given scenario, a forecast of the number of major defects likely to be present at
the start of each appraisal step, and the “containment rate” (expected percentage
of defects likely to be found) for each step. The model forecasts total major
defects found and remaining at each appraisal step based on the parameters
provided.
Table 2: Inspection Effort Model – parameters define the percent of the total work
product to be inspected (often less than 100%), the number of major defects
expected to be found by each inspection type, and the estimated rework hours
per defect per inspection type. Forecasts of number of inspections, inspection
effort, and rework effort for each step are derived from the parameters provided
and from data derived in table 1.
Table 3: Static Analysis Effort Model – required parameters include a forecast of
effort hours per size and rework hours per major defect. Total analysis effort and
rework effort are calculated.
Table 4: Test Effort Model – parameters include effort per size for each test step,
a factor that reflects the impact of pre-test appraisals (if any), and rework hours
per major defect for each test step. Total test execution and rework effort are
calculated for each test step.

Each of these tables is described below and the sources of the parameter values used
are identified. Values used in this example are for Scenario 3.

I encourage readers to share any
data and/or opinions they may have regarding these parameter values. A summary of
feedback I receive will be available to participating parties.

•

•

•

•

These parameter values
may or may not be appropriate to a particular context.

© 2009 Gary A. Gack Page 5

Table 1: The Defect Containment Model

Column 1 - Each row is “tagged” by an identifier in the form “ACEn” where ACE stands
for “Appraisal Containment Effectiveness” and the subscript uniquely identifies a
specific appraisal step or type.
Column 2 - Appraisal steps to be included in any given scenario are named. I have
included a default list of commonly used appraisal steps, but these may be changed as
appropriate to any particular situation. Additional rows might be added if required.
Column 3 – Defects per size “inserted”. The values used here are based on
Jones20091, p.69. I have adjusted his values by allocating documentation defects
proportionately to requirements, design, and code.
Column 4 – ACE % is an estimate of the percentage of incoming defects likely to be
found by the indicated appraisal step. Jones (ibid, p.125) reports containment rates for
inspections range from 65% to 85%. I have elected to use a more conservative 30% in
scenario 2 and 60% in scenarios 3-5 for inspections. I have assumed a conservative
50% containment rate for static analysis – Jones (ibid, p.615) indicates 87% - note that
static analysis applies only to code (it does not find requirements or design defects) and
also does not generally find functional defects – most defects found by static analysis
are “technical” in nature – memory leaks, null pointers, etc. Test step containment rates

© 2009 Gary A. Gack Page 6

are based on Jones20072 p.488 (Outsource). 0% indicates an appraisal type is not
used.
Column 5 – defects found = Major defects present (cumulative) * column 4, ACE%
Column 6 - Defects remaining (present less found, cumulative) are increased by 7% to
reflect bad fixes at each step.

This example (scenario 3 “best”) inspects requirements, design, and code, employs
static analysis, and does not use unit or function tests. As indicated this strategy leads
to 94.9% TCE.

Columns 1 and 2 are the same as in table 1.
Column 3 specifies the percent of the total work product inspected. My experience
suggests wide variation, and I do not believe any particular benchmark is relevant. This
value is a local policy decision based on product risk characteristics and other factors.
Column 4, Major Defects per Inspection, indicates an expected average number of
major defects likely to be found by a single inspection event conducted in accordance
with IEEE Std. 1028-2008. The values used in this illustration are based on a collection
of approximately 1500 individual inspection records complied by my colleagues and I at
SoftwareInspection.org. These records indicate actual results achieved across several
dozen different software groups in a range of industries. Where local data exist they
should certainly be used.
Column 5, number of inspections, is calculated as follows:

Inspections = [# Major defects Found (from table 1) / column 4 (majors per
inspection)] * column 3 (% inspected) – the logic of this calculation rests on the
assumption that we can intelligently select those portions of the work product
most likely to contain major defects and will not need to inspect 100% of the
product to find the number of defects forecast. It is generally accepted that
“defect clustering” occurs – defects are not evenly distributed across the work

Table 2: Inspection Effort Model

© 2009 Gary A. Gack Page 7

product.

Column 6, Inspection person months, is calculated as [number of inspections * 18 hours
per inspection] (consistent with IEEE 1028-2008, excluding rework calculated
separately), divided by 132 hours per month to arrive at person months of inspection
effort.
Column 7, Rework hours per major defect, an additional parameter, is used to calculate
total rework in person months. I have been unable to find satisfactory benchmark values
for rework of defects found by inspections. Hence I use my own “guesstimates” based
on experience. Jones and others have shown the classic “1-10-100” ratio of increasing
defect costs is clearly not correct. In my experience cost to fix a defect does increase
through the life cycle, but only slowly. Again, these parameters are subject to wide
variation and are best determined locally.

This scenario indicates the indicated sequence of three types of inspections will require
15.8 person months to conduct a total of 116 inspections and an additional 16.7 person
months of effort to correct the 3,582 defects forecast to be found by inspections (from
table 1, column 5, ACE1 – ACE3). Inspection effort may be regarded as a “fixed” cost in
that once a decision has been made to conduct the inspections the necessary effort will
be incurred regardless of the number of defects actually found. Rework effort to correct
defects actually found is a variable cost.

Columns 1 and 2 are as in table 1.
Column 3 is a parameter that defines effort required to perform static analysis in hours
per size. The value indicated here, .1 hours per function point, is based on personal
correspondence with Capers Jones. Some static analysis tools run in real-time as code
is entered and will suggest corrections for certain types of defects – hence, time to “run”
the analysis is minimal. I have used .1 hours (6 minutes per function point) as a very
rough approximation of the overhead likely to occur.
Columns 4 and 5 are not used
Column 6 calculates person month required to run static analysis and analyze the
results. = (column 3 * size) / 132 hours per month – .8 person months in this example

Caution – this logic can be misleading if an aggressive containment rate
is used in table 1.

Table 3: Static Analysis Effort Model

© 2009 Gary A. Gack Page 8

Column 7 is a parameter value for time per major defect to correct defects found. The
value used is also based on correspondence with Capers – he indicates static analysis
tools will suggest corrections for approximately 85% of defects identified so fix time for
those is negligible. He also estimates the other 15% will on average require 1.5 hours
each. Accordingly I have assumed an average fix effort of .25 hours per defect.
Column 8 calculates rework person months = [major defects found (from table 1) *
column 7] / 132.

Columns 1 and 2 are as in table 1.
Column 3 specifies test hours per size. Values included here are based on Jones2009
(ibid, p.264, mode values)
Column 4 is a “Pre-Test Impact Factor”. This parameter is used to estimate the impact
that will result if pre-test appraisals are in fact used. When pre-test methods are used
there are several important consequences that impact test effort:

The number of defects coming into any given test step will necessarily be
significantly fewer.
Hence, fewer defects will be found, and less rework will be needed to correct
those defects. “Variable” cost will go down.
Fewer defects incoming means fewer tests will fail. When a test fails it will often
prevent other tests from being executed – they are said to be “blocked”.
Fewer defects incoming also means fewer tests will need to be re-executed to
confirm the fix resolved the problem and did not cause unintended secondary
effects.
In total the length of the overall test cycle may be significantly shorter, resulting in
a reduction in total labor cost required - “fixed” cost may also be less.

The Pre-Test Impact Factor is used to quantify the overall impact of these
consequences – in effect this value indicates the % reduction expected for a given test

Table 4: Test Effort Model

•

•

•

•

•

© 2009 Gary A. Gack Page 9

step due to pre-test appraisals. The value may in some instances be 100% (1.0) if
incoming quality is believed to be sufficiently good to simply not do certain types of tests
(e.g., unit tests).

So far as I am aware no benchmark data on this parameter exist. Note that the number
of defects incoming to testing in scenario 3 (from Table 1, column 6) is 679 vs. 4,601 in
the test-only scenario – a reduction of approximately 85%. The values used in this
example assume a 50% reduction in required test effort.

Column 5 is not used.
Column 6 calculates the effort (person months required to conduct each indicated type
of testing = [(test hours per size * size) / 132] * column 4 (pre-test impact factor)
Column 7 indicates rework hours per major defect. Values indicated are rough
estimates based on my experience. The post-release value (8 hours per major defect) is
based on a rough “average” of several different data points provided by Jones3.
Column 8, total rework hours, is the product of column 7 and the defects found count
from table 1.

Does all of this really make sense? How does this “simulation” compare to what we
know about the real world? One way to evaluate the results of these models is to
examine their conclusions in relation to total effort likely to be devoted to an actual
project. Experimenting with these
models has shown that some published parameter values lead to totally implausible
conclusions – e.g., pre-release NVA effort can exceed total project effort when some of
these values are used. Obviously such a conclusion cannot be valid – at least one
parameter value must be incorrect when the results do not make sense.

According to Jones2008 (ibid, p.295, table 3-29) an average 1,000 function point project
will require about 97.5 person months of effort. The following table summarizes the
results of the 5-scenario simulation, using the parameter values described above, to
illustrate how those results relate to 97.5 person months of total effort.

Sanity Check

Sanity checking any model is always a good idea.

© 2009 Gary A. Gack Page 10

Column 1 identifies the scenario.
Column 2 assumes a “scenario 1” project requires 97.5 person months in total. Other
scenario effort requirements are reduced to reflect savings in pre-release NVA effort
indicated in column 3 as a consequence of the appraisal strategies used in each.
Column 4 gives the percent of pre-release NVA effort for each scenario relative to
scenario 1. As we see, scenario 3 (86.5 person months) results in an 11.3% reduction in
total pre-release effort vs. scenario 1 (97.5 person months). Scenario 5 saves 25.8%
pre-release vs. scenario 1.

Column 5 indicates post-release NVA effort. We see that scenario 1 post-release NVA
effort (57.6 person months) is nearly as large as NVA effort pre-release. The real cost of
this project is almost 50% greater than the cost measured at the time of release. Very
few low maturity organizations ever measure this and quite likely are in denial, but in my
experience this appears to be very realistic. Scenario 2, which introduces limited
inspections in addition to testing included in scenario 1, reduces NVA by
slightly less than 1% but also reduces post-release NVA by about 24%. Perhaps this
dynamic is why so many organizations try inspections but do not sustain them – the
largest savings are not evident at the time of release, and may in any case be in
someone else’s budget!

Column 6 is total effort pre- plus post-release – i.e., the sum of column 2 (total pre-
release effort) and column 5 (post-release effort, which is all rework and hence all NVA).
As indicated in column 7, scenario 3 saves 34% relative to scenario 1.

Scenarios 3, 4, and 5 appear to be highly consistent with results reported by high
maturity organizations.

Try this out with your own data or assumptions – I look forward to your feedback! For a
copy of the model, please send me an email – ggack@process-fusion.net

pre-release

© 2009 Gary A. Gack Page 11

1 Jones, Capers, McGraw Hill 2009 ISBN 978-0-07-162161-8
2 Jones, Capers, McGraw Hill 2007 ISBN 978-0-07-148300-1
3 Approximately 6.6 hours per post-release defect may be derived from data provided in tables 9-13, 9-14, and 9-
15 in Jones2009 (ibid. p. 596-599). 10 hours is suggested in Jones2008 ,
p.485

Software Engineering Best Practices,
Estimating Software Costs, 2nd Ed.,

Applied Software Measurement, 3rd Ed.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

