
Redirecting functions in shared ELF libraries

Written by:

Anthony V. Shoumikhin,

Developer of Driver Development Team,

Apriorit Inc.

http://www.apriorit.com

TABLE OF CONTENTS

1. THE PROBLEM 2

1.1 WHAT DOES REDIRECTING MEAN? 2
1.2 WHY REDIRECTING? 3

2. BRIEF ELF EXPLANATION 5

2.1 WHICH PARTS DOES ELF FILE CONSIST OF? 5
2.2 HOW DO SHARED ELF LIBRARIES LINK? 9
2.3 SOME USEFUL CONCLUSIONS 13

3. THE SOLUTION 14

3.1 WHAT IS THE ALGORITHM OF REDIRECTION? 14
3.2 HOW TO GET THE ADDRESS, WHICH A LIBRARY HAS BEEN LOADED TO? 18
3.3 HOW TO WRITE AND RESTORE A NEW FUNCTION ADDRESS? 18

4. INSTEAD OF CONCLUSION 19

5. USEFUL LINKS 20

http://www.apriorit.com/

1. The problem
We all use Dynamic Link Libraries (DLL). They have excellent facilities. First, such library loads into the

physical address space only once for all processes. Secondly, you can expand the functionality of the program by

loading the additional library, which will provide this functionality. And that is without restarting the program. Also

a problem of updating is solved. It is possible to define the standard interface for the DLL and to influence the

functionality and the quality of the basic program by changing the version of the library. Such methods of the code

reusability were called “plug-in architecture”. But let’s move on.

Of course, not every dynamic link library relies only on itself in its implementation, namely, on the

computational power of the processor and the memory. Libraries use libraries or just standard libraries. For

example, programs in the C\C++ language use standard C\C++ libraries. The latter, besides, are also organized into

the dynamic link form (libc.so and libstdc++.so). They are stored in the files of the specific format. My research was

held for Linux OS where the main format of dynamic link libraries is ELF (Executable and Linkable Format).

Recently I faced the necessity of intercepting function calls from one library into another - just to process

them in such a way. This is called the call redirecting.

1.1 What does redirecting mean?
First, let’s formulate the problem on the concrete example. Supposing we have a program called «test» on

the C language (test.c file) and two split libraries (libtest1.c and libtest2.c files) with permanent contents and which

were compiled beforehand. These libraries provide functions: libtest1() and libtest2(), respectively. In their

implementation each of them uses the puts() function from the standard library of the C language.

A task consists in the following:

1) To replace the call of the puts() function for both libraries by the call of the redirected puts()
function. The latter is implemented in the master program (test.c file) that can in its turn use the
original puts() function;

2) To cancel the performed changes, that is to make so that the repeated call of libtest1() and
libtest2() leads to the call of the original puts() function.

It is not allowed to change the code or recompile the libraries We can change only the master program.

1.2 Why redirecting?
This example illustrates two interesting specifics of such redirection:

1) It is performed only for one concrete dynamic link library and not for all the process like during the use

of LD_PRELOAD environment variable of the dynamic loader. That helps other modules to use the

original function trouble-free.

2) It is performed during the program work and does not require its restart.

Where can it be applied? For example, in your program with the variety of plug-ins, you can intercept its calls

to system resources or some other libraries. It will not influence other plug-ins and the application itself. Or you can

also do the same things from your own plug-in to another application.

How to solve this task? The only variant that came in my mind was to examine ELF and perform

corresponding changes in the memory myself.

2. Brief ELF explanation
The best way to understand ELF is to hold your breath and to read its specification attentively several times.

Then write a simple program, compile it and examine it in details with the help of the hexadecimal editor,

comparing it with the specification. Such method of examination gives the idea of writing some ELF parser because

a lot of chore may appear. But do not be in a hurry. Such utilities have been already created. Let’s take files from

the previous part for the examination:

File test.c
#include <stdio.h>

#include <dlfcn.h>

#define LIBTEST1_PATH "libtest1.so" //position dependent code (for 32 bit only)

#define LIBTEST2_PATH "libtest2.so" //position independent code

void libtest1(); //from libtest1.so

void libtest2(); //from libtest2.so

int main()

{

 void *handle1 = dlopen(LIBTEST1_PATH, RTLD_LAZY);

 void *handle2 = dlopen(LIBTEST2_PATH, RTLD_LAZY);

 if (NULL == handle1 || NULL == handle2)

 fprintf(stderr, "Failed to open \"%s\" or \"%s\"!\n", LIBTEST1_PATH, LIBTEST2_PATH);

 libtest1(); //calls puts() from libc.so twice

 libtest2(); //calls puts() from libc.so twice

 puts("-----------------------------");

 dlclose(handle1);

 dlclose(handle2);

 return 0;

}

File libtest1.c
int puts(char const *);

void libtest1()

{

 puts("libtest1: 1st call to the original puts()");

 puts("libtest1: 2nd call to the original puts()");

}

File libtest2.c
int puts(char const *);

void libtest2()

{

 puts("libtest2: 1st call to the original puts()");

 puts("libtest2: 2nd call to the original puts()");

}

2.1 Which parts does ELF file consist of?
It is necessary to look into such file to answer this question. The following utilities exist for this purpose:

 readelf – a very powerful tool for viewing contents of the ELF file sections

 objdump – it is similar to the previous tool, and it can disassemble the sections

 gdb – it is irreplaceable for debug under Linux OS, especially for viewing places liable to relocation

Relocation is a special term for the place in the ELF file, which refers to the other module symbol. The static

(ld) or dynamic (ld-linux.so.2) linker\loader deals with the direct modification of such places.

Any ELF file begins with the special header. Its structure, as well as the description of many other elements of

the ELF file, can be found in the /usr/include/linux/elf.h file. The header has a special field, in which the offset from

the beginning of the section header table is written. Each element of this table describes some specific section in

the ELF file. A section is the smallest indivisible structure element in the ELF file. During loading into the memory,

sections are combined into segments. Segments are the smallest indivisible elements of the ELF file, which can be

mapped to the memory by the loader (ld-linux.so.2). Segments are described in the table of segments, whose offset

is also displayed in the ELF file header.

The most important of them are:

 .text – contains the module code

 .data – initialized variables

 .bss – non-initialized variables

 .symtab – the module symbols: functions and static variables

 .strtab – the names for module symbols

 .rel.text –the relocation for functions (for statically linked modules)

 .rel.data – the relocation for static variables (for statically linked modules)

 .rel.plt – the list of elements in the PLT (Procedure Linkage Table), which are liable to the relocation during
the dynamic linking (if PLT is used)

 .rel.dyn – the relocation for dynamically linked functions (if PLT is not used)

 .got – Global Offset Table, contains the information about the offsets of relocated objects

 .debug –the debug information

Let’s perform the following commands for the compilation of files listed above:

gcc -g3 -m32 -shared -o libtest1.so libtest1.c

gcc -g3 -m32 -fPIC -shared -o libtest2.so libtest2.c

gcc -g3 -m32 -L$PWD -o test test.c -ltest1 -ltest2 –ldl

The first command creates the dynamic link library libtest1.so. The second creates libtest2.so. Pay attention

to the –fPIC key. It makes the compiler generate the so-called Position Independent Code. Details can be found in

the next part of the article. The third command creates the executable module with the name “test” by means of

the test.c file compilation and by linking it to the already created libtest1.so and libtest2.so libraries. The latter are

in the current directory, what is indicated by –L$PWD key. Linking to libdl.so is necessary for using the dlopen() and

dlclose() functions.

To start the program, perform the following commands:

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

./test

That is to add the path to the current directory as a path for the library search to the dynamic linker\loader.

The program output will be the next:

libtest1: 1st call to the original puts()

libtest1: 2nd call to the original puts()

libtest2: 1st call to the original puts()

libtest2: 2nd call to the original puts()

Now let’s look at the test module sections. Start readelf with the –a key for it. The most interesting examples

are displayed below:

ELF Header:

 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF32

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Intel 80386

 Version: 0x1

 Entry point address: 0x8048580

 Start of program headers: 52 (bytes into file)

 Start of section headers: 21256 (bytes into file)

 Flags: 0x0

 Size of this header: 52 (bytes)

 Size of program headers: 32 (bytes)

 Number of program headers: 8

 Size of section headers: 40 (bytes)

 Number of section headers: 39

 Section header string table index: 36

This is the standard header of the executable module, a magic sequence in the first 16 bytes. The module

type (in this case – executable, but also can be object (.o) and shared (.so)), architecture (i386), recommended

entry point, offsets to the headers of segments and sections, and their size are indicated. At the very end of it is the

offset in the string table for the headers of the sections.

Section Headers:

 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

 [0] NULL 00000000 000000 000000 00 0 0 0

 [1] .interp PROGBITS 08048134 000134 000013 00 A 0 0 1

 ...

 [5] .dynsym DYNSYM 08048200 000200 000110 10 A 6 1 4

 [6] .dynstr STRTAB 08048310 000310 0000df 00 A 0 0 1

 ...

 [9] .rel.dyn REL 08048464 000464 000010 08 A 5 0 4

 [10] .rel.plt REL 08048474 000474 000040 08 A 5 12 4

 [11] .init PROGBITS 080484b4 0004b4 000030 00 AX 0 0 4

 [12] .plt PROGBITS 080484e4 0004e4 000090 04 AX 0 0 4

 [13] .text PROGBITS 08048580 000580 0001fc 00 AX 0 0 16

 [14] .fini PROGBITS 0804877c 00077c 00001c 00 AX 0 0 4

 [15] .rodata PROGBITS 08048798 000798 00005c 00 A 0 0 4

 ...

 [20] .dynamic DYNAMIC 08049f08 000f08 0000e8 08 WA 6 0 4

 [21] .got PROGBITS 08049ff0 000ff0 000004 04 WA 0 0 4

 [22] .got.plt PROGBITS 08049ff4 000ff4 00002c 04 WA 0 0 4

 [23] .data PROGBITS 0804a020 001020 000008 00 WA 0 0 4

 [24] .bss NOBITS 0804a028 001028 00000c 00 WA 0 0 4

 ...

 [27] .debug_pubnames PROGBITS 00000000 0011b8 000040 00 0 0 1

 [28] .debug_info PROGBITS 00000000 0011f8 0004d9 00 0 0 1

 [29] .debug_abbrev PROGBITS 00000000 0016d1 000156 00 0 0 1

 [30] .debug_line PROGBITS 00000000 001827 000309 00 0 0 1

 [31] .debug_frame PROGBITS 00000000 001b30 00003c 00 0 0 4

 [32] .debug_str PROGBITS 00000000 001b6c 00024e 01 MS 0 0 1

 ...

 [36] .shstrtab STRTAB 00000000 0051a8 000160 00 0 0 1

 [37] .symtab SYMTAB 00000000 005920 000530 10 38 57 4

 [38] .strtab STRTAB 00000000 005e50 000268 00 0 0 1

Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S (strings)

 I (info), L (link order), G (group), x (unknown)

 O (extra OS processing required) o (OS specific), p (processor specific)

Here you can see the list of all experimental ELF file sections, their type and mode of loading into the

memory (R, W, X and A).

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4

 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1

 [Requesting program interpreter: /lib/ld-linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000 0x007f8 0x007f8 R E 0x1000

 LOAD 0x000ef4 0x08049ef4 0x08049ef4 0x00134 0x00140 RW 0x1000

 DYNAMIC 0x000f08 0x08049f08 0x08049f08 0x000e8 0x000e8 RW 0x4

 NOTE 0x000148 0x08048148 0x08048148 0x00020 0x00020 R 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

 GNU_RELRO 0x000ef4 0x08049ef4 0x08049ef4 0x0010c 0x0010c R 0x1

This is the list of segments, peculiar containers for sections in the memory. Also the path to the special

module (dynamic linker\loader) is indicated. It is it to range the contents of this ELF file in the memory.

 Section to Segment mapping:

 Segment Sections...

 00

 01 .interp

 02 .interp .note.ABI-tag .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn

.rel.plt .init .plt .text .fini .rodata .eh_frame

 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss

 04 .dynamic

 05 .note.ABI-tag

 06

 07 .ctors .dtors .jcr .dynamic .got

And here, the allocation of the sections by segments during the load is displayed.

But the most interesting section, in which information about imported and exported dynamic link functions is

stored, is called “.dynsym”:

Symbol table '.dynsym' contains 17 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000 0 NOTYPE LOCAL DEFAULT UND

 1: 00000000 0 FUNC GLOBAL DEFAULT UND libtest2

 2: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 3: 00000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

 4: 00000000 0 FUNC GLOBAL DEFAULT UND dlclose@GLIBC_2.0 (2)

 5: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (3)

 6: 00000000 0 FUNC GLOBAL DEFAULT UND libtest1

 7: 00000000 0 FUNC GLOBAL DEFAULT UND dlopen@GLIBC_2.1 (4)

 8: 00000000 0 FUNC GLOBAL DEFAULT UND fprintf@GLIBC_2.0 (3)

 9: 00000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (3)

 10: 0804a034 0 NOTYPE GLOBAL DEFAULT ABS _end

 11: 0804a028 0 NOTYPE GLOBAL DEFAULT ABS _edata

 12: 0804879c 4 OBJECT GLOBAL DEFAULT 15 _IO_stdin_used

 13: 0804a028 4 OBJECT GLOBAL DEFAULT 24 stderr@GLIBC_2.0 (3)

 14: 0804a028 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

 15: 080484b4 0 FUNC GLOBAL DEFAULT 11 _init

 16: 0804877c 0 FUNC GLOBAL DEFAULT 14 _fini

Besides other functions that are necessary for the correct program load\roll-out, you can find familiar names:

libtest1, libtest2, dlopen, fprintf, puts, dlclose. The FUNC type is meant for all of them and because they are not

defined in this module – the index of the section is marked as UND.

The sections “.rel.dyn” and “.rel.plt” are the tables of relocation for those symbols from “.dynsym” that need

relocation during the linking in general.

Relocation section '.rel.dyn' at offset 0x464 contains 2 entries:

 Offset Info Type Sym.Value Sym. Name

08049ff0 00000206 R_386_GLOB_DAT 00000000 __gmon_start__

0804a028 00000d05 R_386_COPY 0804a028 stderr

Relocation section '.rel.plt' at offset 0x474 contains 8 entries:

 Offset Info Type Sym.Value Sym. Name

0804a000 00000107 R_386_JUMP_SLOT 00000000 libtest2

0804a004 00000207 R_386_JUMP_SLOT 00000000 __gmon_start__

0804a008 00000407 R_386_JUMP_SLOT 00000000 dlclose

0804a00c 00000507 R_386_JUMP_SLOT 00000000 __libc_start_main

0804a010 00000607 R_386_JUMP_SLOT 00000000 libtest1

0804a014 00000707 R_386_JUMP_SLOT 00000000 dlopen

0804a018 00000807 R_386_JUMP_SLOT 00000000 fprintf

0804a01c 00000907 R_386_JUMP_SLOT 00000000 puts

What is the difference between these tables from the point of view of the dynamic link of functions? This is

the topic of the next part of the article.

2.2 How do shared ELF libraries link?
The compilation of the libtest1.so and libtest2.so libraries somewhat differed. libtest2.so was compiled with

the –fPIC key (to generate Position Independent Code). Let’s look how it affected the tables of dynamic symbols for

these two models (we use readelf):

Symbol table '.dynsym' contains 11 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000 0 NOTYPE LOCAL DEFAULT UND

 1: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 2: 00000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

 3: 00000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (2)

 4: 00000000 0 FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.1.3 (3)

 5: 00002014 0 NOTYPE GLOBAL DEFAULT ABS _end

 6: 0000200c 0 NOTYPE GLOBAL DEFAULT ABS _edata

 7: 0000043c 32 FUNC GLOBAL DEFAULT 11 libtest1

 8: 0000200c 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

 9: 0000031c 0 FUNC GLOBAL DEFAULT 9 _init

 10: 00000498 0 FUNC GLOBAL DEFAULT 12 _fini

Symbol table '.dynsym' contains 11 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000 0 NOTYPE LOCAL DEFAULT UND

 1: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 2: 00000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

 3: 00000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (2)

 4: 00000000 0 FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.1.3 (3)

 5: 00002018 0 NOTYPE GLOBAL DEFAULT ABS _end

 6: 00002010 0 NOTYPE GLOBAL DEFAULT ABS _edata

 7: 00002010 0 NOTYPE GLOBAL DEFAULT ABS __bss_start

 8: 00000304 0 FUNC GLOBAL DEFAULT 9 _init

 9: 0000043c 52 FUNC GLOBAL DEFAULT 11 libtest2

 10: 000004a8 0 FUNC GLOBAL DEFAULT 12 _fini

So, the tables of dynamic symbols for both libraries differ only in the sequence order of the symbols

themselves. It is clear that both of them use undefined puts() function, and grant libtest1() or libtest2(). How have

the tables of relocation changed?

Relocation section '.rel.dyn' at offset 0x2cc contains 8 entries:

 Offset Info Type Sym.Value Sym. Name

00000445 00000008 R_386_RELATIVE

00000451 00000008 R_386_RELATIVE

00002008 00000008 R_386_RELATIVE

0000044a 00000302 R_386_PC32 00000000 puts

00000456 00000302 R_386_PC32 00000000 puts

00001fe8 00000106 R_386_GLOB_DAT 00000000 __gmon_start__

00001fec 00000206 R_386_GLOB_DAT 00000000 _Jv_RegisterClasses

00001ff0 00000406 R_386_GLOB_DAT 00000000 __cxa_finalize

Relocation section '.rel.plt' at offset 0x30c contains 2 entries:

 Offset Info Type Sym.Value Sym. Name

00002000 00000107 R_386_JUMP_SLOT 00000000 __gmon_start__

00002004 00000407 R_386_JUMP_SLOT 00000000 __cxa_finalize

As for libtest1.so, the relocation of the puts() function is found twice in the “.rel.dyn” section. Let’s look at

these places directly in the module with the help of the disassembler. It is necessary to find the libtest1() function,

in which the double call of the puts() function takes place. We use objdump –D:

0000043c <libtest1>:

 43c: 55 push %ebp

 43d: 89 e5 mov %esp,%ebp

 43f: 83 ec 08 sub $0x8,%esp

 442: c7 04 24 b4 04 00 00 movl $0x4b4,(%esp)

 449: e8 fc ff ff ff call 44a <libtest1+0xe>

 44e: c7 04 24 e0 04 00 00 movl $0x4e0,(%esp)

 455: e8 fc ff ff ff call 456 <libtest1+0x1a>

 45a: c9 leave

 45b: c3 ret

 45c: 90 nop

 45d: 90 nop

 45e: 90 nop

 45f: 90 nop

We have two relative CALL (E8 code) instructions with 0xFFFFFFFC operands. The relative CALL with such

operand makes no sense because it directs the control one byte ahead concerning the address of the CALL

instruction. If you look at the offset of the relocations for puts() in the “.rel.dyn” section, you can see that they are

applied to the operand of the CALL instruction. Thus, in both cases of puts() call, the loader will just rewrite

0xFFFFFFFC so that CALL will jump to the correct address of the puts() function.

The relocation of the R_386_PC32 type works in the described way.

Now let’s pay attention to libtest2.so:

Relocation section '.rel.dyn' at offset 0x2cc contains 4 entries:

 Offset Info Type Sym.Value Sym. Name

0000200c 00000008 R_386_RELATIVE

00001fe8 00000106 R_386_GLOB_DAT 00000000 __gmon_start__

00001fec 00000206 R_386_GLOB_DAT 00000000 _Jv_RegisterClasses

00001ff0 00000406 R_386_GLOB_DAT 00000000 __cxa_finalize

Relocation section '.rel.plt' at offset 0x2ec contains 3 entries:

 Offset Info Type Sym.Value Sym. Name

00002000 00000107 R_386_JUMP_SLOT 00000000 __gmon_start__

00002004 00000307 R_386_JUMP_SLOT 00000000 puts

00002008 00000407 R_386_JUMP_SLOT 00000000 __cxa_finalize

The puts() call is mentioned only once and, besides, in the “.rel.plt” section. Let’s look at the assembler and

perform the debug:

0000043c <libtest2>:

 43c: 55 push %ebp

 43d: 89 e5 mov %esp,%ebp

 43f: 53 push %ebx

 440: 83 ec 04 sub $0x4,%esp

 443: e8 ef ff ff ff call 437 <__i686.get_pc_thunk.bx>

 448: 81 c3 ac 1b 00 00 add $0x1bac,%ebx

 44e: 8d 83 d0 e4 ff ff lea -0x1b30(%ebx),%eax

 454: 89 04 24 mov %eax,(%esp)

 457: e8 f8 fe ff ff call 354 <puts@plt>

 45c: 8d 83 fc e4 ff ff lea -0x1b04(%ebx),%eax

 462: 89 04 24 mov %eax,(%esp)

 465: e8 ea fe ff ff call 354 <puts@plt>

 46a: 83 c4 04 add $0x4,%esp

 46d: 5b pop %ebx

 46e: 5d pop %ebp

 46f: c3 ret

The operands of the CALL instructions are different and intelligent, and this means that they indicate

something. It is not a simple padding anymore. Also it is worth mentioning that the recording of 0x1FF4 (0x1BAC +

0x448) into the EBX Registry is performed before the call of the puts() function. The debugger helps to enquiry the

initial EBX value, which is equal to 0x448. It means that it will prove useful later. 0x354 address leads us to the very

interesting “.plt” section, which is marked as executable as well as “.text”. Here it is:

Disassembly of section .plt:

00000334 <__gmon_start__@plt-0x10>:

 334: ff b3 04 00 00 00 pushl 0x4(%ebx)

 33a: ff a3 08 00 00 00 jmp *0x8(%ebx)

 340: 00 00 add %al,(%eax)

 ...

00000344 <__gmon_start__@plt>:

 344: ff a3 0c 00 00 00 jmp *0xc(%ebx)

 34a: 68 00 00 00 00 push $0x0

 34f: e9 e0 ff ff ff jmp 334 <_init+0x30>

00000354 <puts@plt>:

 354: ff a3 10 00 00 00 jmp *0x10(%ebx)

 35a: 68 08 00 00 00 push $0x8

 35f: e9 d0 ff ff ff jmp 334 <_init+0x30>

00000364 <__cxa_finalize@plt>:

 364: ff a3 14 00 00 00 jmp *0x14(%ebx)

 36a: 68 10 00 00 00 push $0x10

 36f: e9 c0 ff ff ff jmp 334 <_init+0x30>

We detect three instructions at the 0x354 address, which we are interested in. In the first of them, the

unconditional jump to address indicated by EBX (0x1FF4) plus 0x10 is performed. Having made simple calculations,

we get the 0x2004 pointer value. These addresses are in the “.got.plt” section.

Disassembly of section .got.plt:

00001ff4 <.got.plt>:

 1ff4: 20 1f and %bl,(%edi)

 ...

 1ffe: 00 00 add %al,(%eax)

 2000: 4a dec %edx

 2001: 03 00 add (%eax),%eax

 2003: 00 5a 03 add %bl,0x3(%edx)

 2006: 00 00 add %al,(%eax)

 2008: 6a 03 push $0x3

 ...

The most interesting thing happens when we dereference this pointer and finally get the unconditional jump

address, which is equal to 0x35A. But this is in essence the next instruction! Why should we perform such difficult

manipulations and refer to the “.got.plt” section just to jump to the next instruction? What is PLT and GOT at all?

PLT stands for Procedure Linkage Table. It exists in both executables and libraries. It is an array of stubs, one

per imported function call.

PLT[n+1]: jmp *GOT[n+3]

 push #n @push n as a signal to the resolver

 jmp PLT[0]

A subroutine call to PLT[n+1] will result jumping indirect through GOT[n+3]. When first invoked, GOT[n+3]

points back to PLT[n+1] + 6, which is the PUSH\JMP sequence to PLT[0]. Going through the PLT[0], the resolver uses

the argument on the stack to determine 'n' and resolves the symbol 'n'. The resolver code then repairs GOT[n+3] to

point directly at the target subroutine and finally calls it. And each next call to PLT[n+1], it will be directed to the

target subroutine without being resolved by fixed JMP instruction.

The first PLT entry is slightly different, and is used to form a trampoline to the fix up code.

PLT[0]: push &GOT[1]

 jmp GOT[2] @points to resolver()

Thread is directed to the resolver routine. 'n' is already in the stack, and address of GOT[1] gets added to the

stack. This is the way how the resolver (located in /lib/ld-linux.so.2) can determine, which library is asking for its

service.

GOT is the Global Offset Table. The first 3 entries of it are special\reserved. When the GOT is set up for the

first time, all the GOT entries relating to PLT fixups are pointing back to the code at PLT[0].

The special entries in the GOT are:

GOT[0] linked list pointer used by the dynamic loader

GOT[1] pointer to the relocation table for this module

GOT[2] pointer to the fixup\resolver code, located in the ld-linux.so.2 library

GOT[3]

.... indirect function call helpers, one per imported function

GOT[3+M]

GOT[3+M+1]

...... indirect pointers to the global data references, one per imported global symbol

Each library and executable gets its own PLT and GOT array.

The relocation of R_386_JUMP_SLOT type, which was used in the libtest2.so library, works in the described

way. Other types of relocation refer to the static linking that is why we do not need them.

The difference between the code, which depends on the position of loading to the memory, and the one that

does not depend on it (PIC) consists in the methods of allowing of the call of imported functions.

2.3 Some useful conclusions
Let’s make some useful conclusions:

 You can get all the information about imported and exported functions in the “.dynsym” section

 If the module was compiled in the PIC mode (-fPIC key), the calls of the imported functions are performed
via PLT and GOT; the relocation will be performed only once for each function and will be applied to the
first instruction of a specific element in PLT. Information about such relocation can be found in the “.rel.plt”
section

 If the –fPIC key was not used during the library compilation, the relocations are performed on the operand
of each relative CALL instruction as many times as the calls of some imported function are performed in the
code. Information about such relocation can be found in the “.rel.dyn” section

Note: the –fPIC compilation key is required for the 64-bit architecture. It means that the allowing of the calls

of imported functions is always performed via PLT\GOT in the 64-bit libraries. Sections with

relocations are called “.rela.plt” and “.rela.dyn” on such architecture.

3. The solution
You have to know the following things to perform the redirections of the imported function in some dynamic

link library:

1) The path to this library in the file system

2) The virtual address at which it is loaded

3) The name of the function to be replaced

4) The address of the substitute function

Also it is necessary to get the address of the original function in order to perform the backward redirection

and thus to return everything on its place.

The prototype of the function for the redirection in the C language is as follows:

void *elf_hook(char const *library_filename, void const *library_address, char const *function_name, void

const *substitution_address);

3.1 What is the algorithm of redirection?
Here is the algorithm of the work of the redirection function:

1) Open the library file.

2) Store the index of the symbol in the “.dynsym” section, whose name corresponds to the name of the
required function.

3) Look through the “.rel.plt” section and search for the relocation for the symbol with the specified index.

4) If such symbol is found, save its original address in order to restore it from the function later. Then write
the address of the substitute function in the place that was specified in the relocation. This place is
calculated as the sum of the address of the load of the library into the memory and the offset in the
relocation. That is all. The substitution of the function address is performed. The redirection will be
performed every time at the call of this function by the library. Exit the function and restore the address
of the original symbol.

5) If such symbol is not found in the “.rel.plt” section, search for it in the “rel.dyn” section likewise. But
remember that in the “rel.dyn” section of relocations the symbol with the required index can be found
not once. That is why you should not terminate the search loop after the first redirection. But you can
store the address of the original symbol at the first coincidence and not to calculate it anymore, it will
not change anyway.

6) Restore the address of the original function or just NULL if the function with the required name was not
found.

The code of this function in the C language is displayed below:

void *elf_hook(char const *module_filename, void const *module_address, char const *name, void const

*substitution)

{

 static size_t pagesize;

 int descriptor; //file descriptor of shared module

 Elf_Shdr

 *dynsym = NULL, // ".dynsym" section header

 *rel_plt = NULL, // ".rel.plt" section header

 *rel_dyn = NULL; // ".rel.dyn" section header

 Elf_Sym

 *symbol = NULL; //symbol table entry for symbol named "name"

 Elf_Rel

 *rel_plt_table = NULL, //array with ".rel.plt" entries

 *rel_dyn_table = NULL; //array with ".rel.dyn" entries

 size_t

 i,

 name_index = 0, //index of symbol named "name" in ".dyn.sym"

 rel_plt_amount = 0, // amount of ".rel.plt" entries

 rel_dyn_amount = 0, // amount of ".rel.dyn" entries

 *name_address = NULL; //address of relocation for symbol named "name"

 void *original = NULL; //address of the symbol being substituted

 if (NULL == module_address || NULL == name || NULL == substitution)

 return original;

 if (!pagesize)

 pagesize = sysconf(_SC_PAGESIZE);

 descriptor = open(module_filename, O_RDONLY);

 if (descriptor < 0)

 return original;

 if (

 section_by_type(descriptor, SHT_DYNSYM, &dynsym) || //get ".dynsym" section

 symbol_by_name(descriptor, dynsym, name, &symbol, &name_index) || //actually, we need only the

index of symbol named "name" in the ".dynsym" table

 section_by_name(descriptor, REL_PLT, &rel_plt) || //get ".rel.plt" (for 32-bit) or ".rela.plt"

(for 64-bit) section

 section_by_name(descriptor, REL_DYN, &rel_dyn) //get ".rel.dyn" (for 32-bit) or ".rela.dyn" (for

64-bit) section

)

 { //if something went wrong

 free(dynsym);

 free(rel_plt);

 free(rel_dyn);

 free(symbol);

 close(descriptor);

 return original;

 }

//release the data used

 free(dynsym);

 free(symbol);

 rel_plt_table = (Elf_Rel *)(((size_t)module_address) + rel_plt->sh_addr); //init the ".rel.plt" array

 rel_plt_amount = rel_plt->sh_size / sizeof(Elf_Rel); //and get its size

 rel_dyn_table = (Elf_Rel *)(((size_t)module_address) + rel_dyn->sh_addr); //init the ".rel.dyn" array

 rel_dyn_amount = rel_dyn->sh_size / sizeof(Elf_Rel); //and get its size

//release the data used

 free(rel_plt);

 free(rel_dyn);

//and descriptor

 close(descriptor);

//now we've got ".rel.plt" (needed for PIC) table and ".rel.dyn" (for non-PIC) table and the symbol's index

 for (i = 0; i < rel_plt_amount; ++i) //lookup the ".rel.plt" table

 if (ELF_R_SYM(rel_plt_table[i].r_info) == name_index) //if we found the symbol to substitute in

".rel.plt"

 {

 original = (void *)*(size_t *)(((size_t)module_address) + rel_plt_table[i].r_offset); //save

the original function address

 *(size_t *)(((size_t)module_address) + rel_plt_table[i].r_offset) = (size_t)substitution;

//and replace it with the substitutional

 break; //the target symbol appears in ".rel.plt" only once

 }

 if (original)

 return original;

//we will get here only with 32-bit non-PIC module

 for (i = 0; i < rel_dyn_amount; ++i) //lookup the ".rel.dyn" table

 if (ELF_R_SYM(rel_dyn_table[i].r_info) == name_index) //if we found the symbol to substitute in

".rel.dyn"

 {

 name_address = (size_t *)(((size_t)module_address) + rel_dyn_table[i].r_offset); //get the

relocation address (address of a relative CALL (0xE8) instruction's argument)

 if (!original)

 original = (void *)(*name_address + (size_t)name_address + sizeof(size_t)); //calculate an

address of the original function by a relative CALL (0xE8) instruction's argument

 mprotect((void *)(((size_t)name_address) & (((size_t)-1) ^ (pagesize - 1))), pagesize,

PROT_READ | PROT_WRITE); //mark a memory page that contains the relocation as writable

 if (errno)

 return NULL;

 *name_address = (size_t)substitution - (size_t)name_address - sizeof(size_t); //calculate a

new relative CALL (0xE8) instruction's argument for the substitutional function and write it down

 mprotect((void *)(((size_t)name_address) & (((size_t)-1) ^ (pagesize - 1))), pagesize,

PROT_READ | PROT_EXEC); //mark a memory page that contains the relocation back as executable

 if (errno) //if something went wrong

 {

 *name_address = (size_t)original - (size_t)name_address - sizeof(size_t); //then restore

the original function address

 return NULL;

 }

 }

 return original;

}

A full implementation of this function with test examples is attached to this article.

Let’s rewrite our test program:

#include <stdio.h>

#include <dlfcn.h>

#include "elf_hook.h"

#define LIBTEST1_PATH "libtest1.so" //position dependent code (for 32 bit only)

#define LIBTEST2_PATH "libtest2.so" //position independent code

void libtest1(); //from libtest1.so

void libtest2(); //from libtest2.so

int hooked_puts(char const *s)

{

 puts(s); //calls the original puts() from libc.so because our main executable module called "test" is

intact by hook

 puts("is HOOKED!");

}

int main()

{

 void *handle1 = dlopen(LIBTEST1_PATH, RTLD_LAZY);

 void *handle2 = dlopen(LIBTEST2_PATH, RTLD_LAZY);

 void *original1, *original2;

 if (NULL == handle1 || NULL == handle2)

 fprintf(stderr, "Failed to open \"%s\" or \"%s\"!\n", LIBTEST1_PATH, LIBTEST2_PATH);

 libtest1(); //calls puts() from libc.so twice

 libtest2(); //calls puts() from libc.so twice

 puts("-----------------------------");

 original1 = elf_hook(LIBTEST1_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle1), "puts", hooked_puts);

 original2 = elf_hook(LIBTEST2_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle2), "puts", hooked_puts);

 if (NULL == original1 || NULL == original2)

 fprintf(stderr, "Redirection failed!\n");

 libtest1(); //calls hooked_puts() twice

 libtest2(); //calls hooked_puts() twice

 puts("-----------------------------");

 original1 = elf_hook(LIBTEST1_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle1), "puts", original1);

 original2 = elf_hook(LIBTEST2_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle2), "puts", original2);

 if (NULL == original1 || original1 != original2) //both pointers should contain hooked_puts() address

now

 fprintf(stderr, "Restoration failed!\n");

 libtest1(); //again calls puts() from libc.so twice

 libtest2(); //again calls puts() from libc.so twice

 dlclose(handle1);

 dlclose(handle2);

 return 0;

}

Compile it:

gcc -g3 -m32 -shared -o libtest1.so libtest1.c

gcc -g3 -m32 -fPIC -shared -o libtest2.so libtest2.c

gcc -g3 -m32 -L$PWD -o test test.c elf_hook.c -ltest1 -ltest2 -ldl

Then start it:

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

./test

The output will be the following:

libtest1: 1st call to the original puts()

libtest1: 2nd call to the original puts()

libtest2: 1st call to the original puts()

libtest2: 2nd call to the original puts()

libtest1: 1st call to the original puts()

is HOOKED!

libtest1: 2nd call to the original puts()

is HOOKED!

libtest2: 1st call to the original puts()

is HOOKED!

libtest2: 2nd call to the original puts()

is HOOKED!

libtest1: 1st call to the original puts()

libtest1: 2nd call to the original puts()

libtest2: 1st call to the original puts()

libtest2: 2nd call to the original puts()

It indicates the entire fulfillment of the task, which was formulated in the first part of the article.

3.2 How to get the address, which a library has been loaded to?
This interesting question arises during the detailed examination of the function prototype for the redirection.

After some research I managed to find out the method of discovering the address of the library loading by its

descriptor, which is returned by the dlopen() function. It is performed with the help of such macro:

#define LIBRARY_ADDRESS_BY_HANDLE(dlhandle) ((NULL == dlhandle) ? NULL : (void*)*(size_t const*)(dlhandle))

3.3 How to write and restore a new function address?
There are no problems with the rewriting of the addresses, which the relocations from the “.rel.plt” section

point to. In fact, the operand of the JMP instruction of the corresponding element from the “.plt” section is

rewritten. And the operands of such instruction are just addresses.

The situation is more interesting with the applying of relocations to the operands of the relative CALL

instructions (E8 code). Their jump addresses are calculated by formula:

address_of_a_function = CALL_argument + address_of_the_next_instruction

Thus, we can find out the address of the original function. Above mentioned formula gives us the value,

which has to be written as an argument for the relative CALL in order to perform the call of the necessary function:

CALL_argument = address_of_a_function - address_of_the_next_instruction

The “.rel.dyn” section gets into the segment, which is marked as “R E”. It means that you cannot simply write

addresses. It is necessary to add the right for record for the page, which the relocation falls to. Do not forget to

return everything on its places after the redirection. It is performed with the help of the mprotect() function. The

first parameter of this function is the address of the page, which contains the relocation. It must be always multiple

of the page size. It is not difficult to calculate it: you should just zero some low bytes of the relocation address

(depending on the page size):

page_address = (size_t)relocation_address & (((size_t) -1) ^ (pagesize - 1));

For example, for pages of 4096 (0x1000) byte size on the 32-bit system, the expression above will be

converted to:

page_address = (size_t)relocation_address & (0xFFFFFFFF ^ 0xFFF) = (size_t)relocation_address & 0xFFFFF000;

The size of one page can be obtained by calling sysconf(_SC_PAGESIZE).

4. Instead of conclusion
As an exercise, you can write a plug-in for Firefox, which will redirect to itself all network calls of, e.g., Adobe

Flash plug-in (libflashplayer.so). Thus, you can control all Adobe Flash traffic in the Internet from the Firefox process

without the influence on the network calls of the explorer itself and other plug-ins.

Now you have a very convenient tool for the redirection of calls of the imported functions in the ELF dynamic

link libraries. Good luck!

Downloads

http://www.apriorit.com/our-experience/articles/9-sd-articles/181-elf-hook

http://www.apriorit.com/our-experience/articles/9-sd-articles/181-elf-hook

5. Useful links
 http://www.skyfree.org/linux/references/ELF_Format.pdf

 http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

 http://vxheavens.com/lib/vsc06.html

 http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

 http://www.slideshare.net/sanjivmalik/dynamic-linker-presentation

 http://www.codeproject.com/KB/cpp/shared_object_injection_1.aspx

 http://www.linuxjournal.com/article/1060

http://www.skyfree.org/linux/references/ELF_Format.pdf
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://vxheavens.com/lib/vsc06.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://www.slideshare.net/sanjivmalik/dynamic-linker-presentation
http://www.codeproject.com/KB/cpp/shared_object_injection_1.aspx
http://www.linuxjournal.com/article/1060

