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1. The problem 
We all use Dynamic Link Libraries (DLL). They have excellent facilities. First, such library loads into the 

physical address space only once for all processes. Secondly, you can expand the functionality of the program by 

loading the additional library, which will provide this functionality. And that is without restarting the program. Also 

a problem of updating is solved. It is possible to define the standard interface for the DLL and to influence the 

functionality and the quality of the basic program by changing the version of the library. Such methods of the code 

reusability were called “plug-in architecture”. But let’s move on. 

Of course, not every dynamic link library relies only on itself in its implementation, namely, on the 

computational power of the processor and the memory. Libraries use libraries or just standard libraries. For 

example, programs in the C\C++ language use standard C\C++ libraries. The latter, besides, are also organized into 

the dynamic link form (libc.so and libstdc++.so). They are stored in the files of the specific format. My research was 

held for Linux OS where the main format of dynamic link libraries is ELF (Executable and Linkable Format). 

Recently I faced the necessity of intercepting function calls from one library into another - just to process 

them in such a way. This is called the call redirecting. 

1.1 What does redirecting mean? 
First, let’s formulate the problem on the concrete example. Supposing we have a program called «test» on 

the C language (test.c file) and two split libraries (libtest1.c and libtest2.c files) with permanent contents and which 

were compiled beforehand. These libraries provide functions: libtest1() and libtest2(), respectively. In their 

implementation each of them uses the puts() function from the standard library of the C language. 

 

A task consists in the following: 

1) To replace the call of the puts() function for both libraries by the call of the redirected puts() 
function. The latter is implemented in the master program (test.c file) that can in its turn use the 
original puts() function; 



 

2) To cancel the performed changes, that is to make so that the repeated call of libtest1() and 
libtest2() leads to the call of the original puts() function. 

 

It is not allowed to change the code or recompile the libraries We can change only the master program. 

1.2 Why redirecting? 
This example illustrates two interesting specifics of such redirection: 

1) It is performed only for one concrete dynamic link library and not for all the process like during the use 

of LD_PRELOAD environment variable of the dynamic loader. That helps other modules to use the 

original function trouble-free. 



2) It is performed during the program work and does not require its restart. 

Where can it be applied? For example, in your program with the variety of plug-ins, you can intercept its calls 

to system resources or some other libraries. It will not influence other plug-ins and the application itself. Or you can 

also do the same things from your own plug-in to another application. 

How to solve this task? The only variant that came in my mind was to examine ELF and perform 

corresponding changes in the memory myself. 



2. Brief ELF explanation 
The best way to understand ELF is to hold your breath and to read its specification attentively several times. 

Then write a simple program, compile it and examine it in details with the help of the hexadecimal editor, 

comparing it with the specification. Such method of examination gives the idea of writing some ELF parser because 

a lot of chore may appear. But do not be in a hurry. Such utilities have been already created. Let’s take files from 

the previous part for the examination: 

File test.c 
#include <stdio.h> 

#include <dlfcn.h> 

 

#define LIBTEST1_PATH "libtest1.so"  //position dependent code (for 32 bit only) 

#define LIBTEST2_PATH "libtest2.so"  //position independent code 

 

void libtest1();  //from libtest1.so 

void libtest2();  //from libtest2.so 

 

int main() 

{ 

    void *handle1 = dlopen(LIBTEST1_PATH, RTLD_LAZY); 

    void *handle2 = dlopen(LIBTEST2_PATH, RTLD_LAZY); 

 

    if (NULL == handle1 || NULL == handle2) 

        fprintf(stderr, "Failed to open \"%s\" or \"%s\"!\n", LIBTEST1_PATH, LIBTEST2_PATH); 

 

    libtest1();  //calls puts() from libc.so twice 

    libtest2();  //calls puts() from libc.so twice 

    puts("-----------------------------"); 

 

    dlclose(handle1); 

    dlclose(handle2); 

 

    return 0; 

} 

 

File libtest1.c 
int puts(char const *); 

 

void libtest1() 

{ 

    puts("libtest1: 1st call to the original puts()"); 

    puts("libtest1: 2nd call to the original puts()"); 

} 

 

File libtest2.c 
int puts(char const *); 

 

void libtest2() 

{ 

    puts("libtest2: 1st call to the original puts()"); 

    puts("libtest2: 2nd call to the original puts()"); 

} 

 

2.1 Which parts does ELF file consist of? 
It is necessary to look into such file to answer this question. The following utilities exist for this purpose: 

 readelf – a very powerful tool for viewing contents of the ELF file sections 

 objdump – it is similar to the previous tool, and it can disassemble the sections 

 gdb – it is irreplaceable for debug under Linux OS, especially for viewing places liable to relocation 



Relocation is a special term for the place in the ELF file, which refers to the other module symbol. The static 

(ld) or dynamic (ld-linux.so.2) linker\loader deals with the direct modification of such places. 

Any ELF file begins with the special header. Its structure, as well as the description of many other elements of 

the ELF file, can be found in the /usr/include/linux/elf.h file. The header has a special field, in which the offset from 

the beginning of the section header table is written. Each element of this table describes some specific section in 

the ELF file. A section is the smallest indivisible structure element in the ELF file. During loading into the memory, 

sections are combined into segments. Segments are the smallest indivisible elements of the ELF file, which can be 

mapped to the memory by the loader (ld-linux.so.2). Segments are described in the table of segments, whose offset 

is also displayed in the ELF file header. 

 

The most important of them are: 

 .text – contains the module code 

 .data – initialized variables 

 .bss – non-initialized variables 

 .symtab – the module symbols: functions and static variables 

 .strtab – the names for module symbols 

 .rel.text –the relocation for functions (for statically linked modules) 

 .rel.data – the relocation for static variables (for statically linked modules) 

 .rel.plt – the list of elements in the PLT (Procedure Linkage Table), which are liable to the relocation during 
the dynamic linking (if PLT is used) 

 .rel.dyn – the relocation for dynamically linked functions (if PLT is not used) 

 .got – Global Offset Table, contains the information about the offsets of relocated objects 

 .debug –the debug information 

Let’s perform the following commands for the compilation of files listed above: 

gcc -g3 -m32 -shared -o libtest1.so libtest1.c 

gcc -g3 -m32 -fPIC -shared -o libtest2.so libtest2.c 



gcc -g3 -m32 -L$PWD -o test test.c -ltest1 -ltest2 –ldl 

 

The first command creates the dynamic link library libtest1.so. The second creates libtest2.so. Pay attention 

to the –fPIC key. It makes the compiler generate the so-called Position Independent Code. Details can be found in 

the next part of the article. The third command creates the executable module with the name “test” by means of 

the test.c file compilation and by linking it to the already created libtest1.so and libtest2.so libraries. The latter are 

in the current directory, what is indicated by –L$PWD key. Linking to libdl.so is necessary for using the dlopen() and 

dlclose() functions. 

To start the program, perform the following commands: 

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH 

./test 

 

That is to add the path to the current directory as a path for the library search to the dynamic linker\loader. 

The program output  will be the next: 

libtest1: 1st call to the original puts() 

libtest1: 2nd call to the original puts() 

libtest2: 1st call to the original puts() 

libtest2: 2nd call to the original puts() 

----------------------------- 

 

Now let’s look at the test module sections. Start readelf with the –a key for it. The most interesting examples 

are displayed below: 

ELF Header: 

  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00  

  Class:                             ELF32 

  Data:                              2's complement, little endian 

  Version:                           1 (current) 

  OS/ABI:                            UNIX - System V 

  ABI Version:                       0 

  Type:                              EXEC (Executable file) 

  Machine:                           Intel 80386 

  Version:                           0x1 

  Entry point address:               0x8048580 

  Start of program headers:          52 (bytes into file) 

  Start of section headers:          21256 (bytes into file) 

  Flags:                             0x0 

  Size of this header:               52 (bytes) 

  Size of program headers:           32 (bytes) 

  Number of program headers:         8 

  Size of section headers:           40 (bytes) 

  Number of section headers:         39 

  Section header string table index: 36 

 

This is the standard header of the executable module, a magic sequence in the first 16 bytes. The module 

type (in this case – executable, but also can be object (.o) and shared (.so)), architecture (i386), recommended 

entry point, offsets to the headers of segments and sections, and their size are indicated. At the very end of it is the 

offset in the string table for the headers of the sections. 

Section Headers: 

  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al 

  [ 0]                   NULL            00000000 000000 000000 00      0   0  0 

  [ 1] .interp           PROGBITS        08048134 000134 000013 00   A  0   0  1 

  ... 

  [ 5] .dynsym           DYNSYM          08048200 000200 000110 10   A  6   1  4 

  [ 6] .dynstr           STRTAB          08048310 000310 0000df 00   A  0   0  1 

  ... 

  [ 9] .rel.dyn          REL             08048464 000464 000010 08   A  5   0  4 

  [10] .rel.plt          REL             08048474 000474 000040 08   A  5  12  4 

  [11] .init             PROGBITS        080484b4 0004b4 000030 00  AX  0   0  4 



  [12] .plt              PROGBITS        080484e4 0004e4 000090 04  AX  0   0  4 

  [13] .text             PROGBITS        08048580 000580 0001fc 00  AX  0   0 16 

  [14] .fini             PROGBITS        0804877c 00077c 00001c 00  AX  0   0  4 

  [15] .rodata           PROGBITS        08048798 000798 00005c 00   A  0   0  4 

  ... 

  [20] .dynamic          DYNAMIC         08049f08 000f08 0000e8 08  WA  6   0  4 

  [21] .got              PROGBITS        08049ff0 000ff0 000004 04  WA  0   0  4 

  [22] .got.plt          PROGBITS        08049ff4 000ff4 00002c 04  WA  0   0  4 

  [23] .data             PROGBITS        0804a020 001020 000008 00  WA  0   0  4 

  [24] .bss              NOBITS          0804a028 001028 00000c 00  WA  0   0  4 

  ... 

  [27] .debug_pubnames   PROGBITS        00000000 0011b8 000040 00      0   0  1 

  [28] .debug_info       PROGBITS        00000000 0011f8 0004d9 00      0   0  1 

  [29] .debug_abbrev     PROGBITS        00000000 0016d1 000156 00      0   0  1 

  [30] .debug_line       PROGBITS        00000000 001827 000309 00      0   0  1 

  [31] .debug_frame      PROGBITS        00000000 001b30 00003c 00      0   0  4 

  [32] .debug_str        PROGBITS        00000000 001b6c 00024e 01  MS  0   0  1 

  ... 

  [36] .shstrtab         STRTAB          00000000 0051a8 000160 00      0   0  1 

  [37] .symtab           SYMTAB          00000000 005920 000530 10     38  57  4 

  [38] .strtab           STRTAB          00000000 005e50 000268 00      0   0  1 

Key to Flags: 

  W (write), A (alloc), X (execute), M (merge), S (strings) 

  I (info), L (link order), G (group), x (unknown) 

  O (extra OS processing required) o (OS specific), p (processor specific) 

 

Here you can see the list of all experimental ELF file sections, their type and mode of  loading into the 

memory (R, W, X and A). 

Program Headers: 

  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align 

  PHDR           0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4 

  INTERP         0x000134 0x08048134 0x08048134 0x00013 0x00013 R   0x1 

      [Requesting program interpreter: /lib/ld-linux.so.2] 

  LOAD           0x000000 0x08048000 0x08048000 0x007f8 0x007f8 R E 0x1000 

  LOAD           0x000ef4 0x08049ef4 0x08049ef4 0x00134 0x00140 RW  0x1000 

  DYNAMIC        0x000f08 0x08049f08 0x08049f08 0x000e8 0x000e8 RW  0x4 

  NOTE           0x000148 0x08048148 0x08048148 0x00020 0x00020 R   0x4 

  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x4 

  GNU_RELRO      0x000ef4 0x08049ef4 0x08049ef4 0x0010c 0x0010c R   0x1 

 

This is the list of segments, peculiar containers for sections in the memory. Also the path to the special 

module (dynamic linker\loader) is indicated. It is it to range the contents of this ELF file in the memory. 

 Section to Segment mapping: 

  Segment Sections... 

   00      

   01     .interp  

   02     .interp .note.ABI-tag .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn 

.rel.plt .init .plt .text .fini .rodata .eh_frame  

   03     .ctors .dtors .jcr .dynamic .got .got.plt .data .bss  

   04     .dynamic  

   05     .note.ABI-tag  

   06      

   07     .ctors .dtors .jcr .dynamic .got 

 

And here, the allocation of the sections by segments during the load is displayed. 

But the most interesting section, in which information about imported and exported dynamic link functions is 

stored, is called “.dynsym”: 

Symbol table '.dynsym' contains 17 entries: 

   Num:    Value  Size Type    Bind   Vis      Ndx Name 

     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND  

     1: 00000000     0 FUNC    GLOBAL DEFAULT  UND libtest2 

     2: 00000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__ 

     3: 00000000     0 NOTYPE  WEAK   DEFAULT  UND _Jv_RegisterClasses 



     4: 00000000     0 FUNC    GLOBAL DEFAULT  UND dlclose@GLIBC_2.0 (2) 

     5: 00000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.0 (3) 

     6: 00000000     0 FUNC    GLOBAL DEFAULT  UND libtest1 

     7: 00000000     0 FUNC    GLOBAL DEFAULT  UND dlopen@GLIBC_2.1 (4) 

     8: 00000000     0 FUNC    GLOBAL DEFAULT  UND fprintf@GLIBC_2.0 (3) 

     9: 00000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.0 (3) 

    10: 0804a034     0 NOTYPE  GLOBAL DEFAULT  ABS _end 

    11: 0804a028     0 NOTYPE  GLOBAL DEFAULT  ABS _edata 

    12: 0804879c     4 OBJECT  GLOBAL DEFAULT   15 _IO_stdin_used 

    13: 0804a028     4 OBJECT  GLOBAL DEFAULT   24 stderr@GLIBC_2.0 (3) 

    14: 0804a028     0 NOTYPE  GLOBAL DEFAULT  ABS __bss_start 

    15: 080484b4     0 FUNC    GLOBAL DEFAULT   11 _init 

    16: 0804877c     0 FUNC    GLOBAL DEFAULT   14 _fini 

 

Besides other functions that are necessary for the correct program load\roll-out, you can find familiar names: 

libtest1, libtest2, dlopen, fprintf, puts, dlclose. The FUNC type is meant for all of them and because they are not 

defined in this module – the index of the section is marked as UND. 

The sections “.rel.dyn” and “.rel.plt” are the tables of relocation for those symbols from “.dynsym” that need 

relocation during the linking in general. 

Relocation section '.rel.dyn' at offset 0x464 contains 2 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

08049ff0  00000206 R_386_GLOB_DAT    00000000   __gmon_start__ 

0804a028  00000d05 R_386_COPY        0804a028   stderr 

 

Relocation section '.rel.plt' at offset 0x474 contains 8 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

0804a000  00000107 R_386_JUMP_SLOT   00000000   libtest2 

0804a004  00000207 R_386_JUMP_SLOT   00000000   __gmon_start__ 

0804a008  00000407 R_386_JUMP_SLOT   00000000   dlclose 

0804a00c  00000507 R_386_JUMP_SLOT   00000000   __libc_start_main 

0804a010  00000607 R_386_JUMP_SLOT   00000000   libtest1 

0804a014  00000707 R_386_JUMP_SLOT   00000000   dlopen 

0804a018  00000807 R_386_JUMP_SLOT   00000000   fprintf 

0804a01c  00000907 R_386_JUMP_SLOT   00000000   puts 

 

What is the difference between these tables from the point of view of the dynamic link of functions? This is 

the topic of the next part of the article. 

 

2.2 How do shared ELF libraries link? 
The compilation of the libtest1.so and libtest2.so libraries somewhat differed. libtest2.so was compiled with 

the –fPIC key (to generate Position Independent Code). Let’s look how it affected the tables of dynamic symbols for 

these two models (we use readelf): 

Symbol table '.dynsym' contains 11 entries: 

   Num:    Value  Size Type    Bind   Vis      Ndx Name 

     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND  

     1: 00000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__ 

     2: 00000000     0 NOTYPE  WEAK   DEFAULT  UND _Jv_RegisterClasses 

     3: 00000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.0 (2) 

     4: 00000000     0 FUNC    WEAK   DEFAULT  UND __cxa_finalize@GLIBC_2.1.3 (3) 

     5: 00002014     0 NOTYPE  GLOBAL DEFAULT  ABS _end 

     6: 0000200c     0 NOTYPE  GLOBAL DEFAULT  ABS _edata 

     7: 0000043c    32 FUNC    GLOBAL DEFAULT   11 libtest1 

     8: 0000200c     0 NOTYPE  GLOBAL DEFAULT  ABS __bss_start 

     9: 0000031c     0 FUNC    GLOBAL DEFAULT    9 _init 

    10: 00000498     0 FUNC    GLOBAL DEFAULT   12 _fini 

 
Symbol table '.dynsym' contains 11 entries: 

   Num:    Value  Size Type    Bind   Vis      Ndx Name 

     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND  

     1: 00000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__ 



     2: 00000000     0 NOTYPE  WEAK   DEFAULT  UND _Jv_RegisterClasses 

     3: 00000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.0 (2) 

     4: 00000000     0 FUNC    WEAK   DEFAULT  UND __cxa_finalize@GLIBC_2.1.3 (3) 

     5: 00002018     0 NOTYPE  GLOBAL DEFAULT  ABS _end 

     6: 00002010     0 NOTYPE  GLOBAL DEFAULT  ABS _edata 

     7: 00002010     0 NOTYPE  GLOBAL DEFAULT  ABS __bss_start 

     8: 00000304     0 FUNC    GLOBAL DEFAULT    9 _init 

     9: 0000043c    52 FUNC    GLOBAL DEFAULT   11 libtest2 

    10: 000004a8     0 FUNC    GLOBAL DEFAULT   12 _fini 

 

So, the tables of dynamic symbols for both libraries differ only in the sequence order of the symbols 

themselves. It is clear that both of them use undefined puts() function, and grant libtest1() or libtest2(). How have  

the tables of relocation changed? 

 
 

Relocation section '.rel.dyn' at offset 0x2cc contains 8 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

00000445  00000008 R_386_RELATIVE    

00000451  00000008 R_386_RELATIVE    

00002008  00000008 R_386_RELATIVE    

0000044a  00000302 R_386_PC32        00000000   puts 

00000456  00000302 R_386_PC32        00000000   puts 

00001fe8  00000106 R_386_GLOB_DAT    00000000   __gmon_start__ 

00001fec  00000206 R_386_GLOB_DAT    00000000   _Jv_RegisterClasses 

00001ff0  00000406 R_386_GLOB_DAT    00000000   __cxa_finalize 

 

Relocation section '.rel.plt' at offset 0x30c contains 2 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

00002000  00000107 R_386_JUMP_SLOT   00000000   __gmon_start__ 

00002004  00000407 R_386_JUMP_SLOT   00000000   __cxa_finalize 

 

As for libtest1.so, the relocation of the puts() function is found twice in the “.rel.dyn” section. Let’s look at 

these places directly in the module with the help of the disassembler.  It is necessary to find the libtest1() function, 

in which the double call of the puts() function takes place. We use objdump –D: 

 
0000043c <libtest1>: 

 43c: 55                    push   %ebp 

 43d: 89 e5                 mov    %esp,%ebp 

 43f: 83 ec 08              sub    $0x8,%esp 

 442: c7 04 24 b4 04 00 00  movl   $0x4b4,(%esp) 

 449: e8 fc ff ff ff        call   44a <libtest1+0xe> 

 44e: c7 04 24 e0 04 00 00  movl   $0x4e0,(%esp) 

 455: e8 fc ff ff ff        call   456 <libtest1+0x1a> 

 45a: c9                    leave   

 45b: c3                    ret     

 45c: 90                    nop     

 45d: 90                    nop     

 45e: 90                    nop     

 45f: 90                    nop 

 

We have two relative CALL (E8 code) instructions with 0xFFFFFFFC operands. The relative CALL with such 

operand makes no sense because it directs the control one byte ahead concerning the address of the CALL 

instruction. If you look at the offset of the relocations for puts() in the “.rel.dyn” section, you can see that they are 

applied to the operand of the CALL instruction. Thus, in both cases of puts() call, the loader will just rewrite  

0xFFFFFFFC  so that CALL will jump to the correct address of the puts() function. 

The relocation of the R_386_PC32 type works in the described way. 

Now let’s pay attention to libtest2.so: 

Relocation section '.rel.dyn' at offset 0x2cc contains 4 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

0000200c  00000008 R_386_RELATIVE    



00001fe8  00000106 R_386_GLOB_DAT    00000000   __gmon_start__ 

00001fec  00000206 R_386_GLOB_DAT    00000000   _Jv_RegisterClasses 

00001ff0  00000406 R_386_GLOB_DAT    00000000   __cxa_finalize 

 

Relocation section '.rel.plt' at offset 0x2ec contains 3 entries: 

 Offset     Info    Type            Sym.Value  Sym. Name 

00002000  00000107 R_386_JUMP_SLOT   00000000   __gmon_start__ 

00002004  00000307 R_386_JUMP_SLOT   00000000   puts 

00002008  00000407 R_386_JUMP_SLOT   00000000   __cxa_finalize 

 

The puts() call is mentioned only once and, besides, in the “.rel.plt” section. Let’s look at the assembler and 

perform the debug: 

0000043c <libtest2>: 

 43c: 55                    push   %ebp 

 43d: 89 e5                 mov    %esp,%ebp 

 43f: 53                    push   %ebx 

 440: 83 ec 04              sub    $0x4,%esp 

 443: e8 ef ff ff ff        call   437 <__i686.get_pc_thunk.bx> 

 448: 81 c3 ac 1b 00 00     add    $0x1bac,%ebx 

 44e: 8d 83 d0 e4 ff ff     lea    -0x1b30(%ebx),%eax 

 454: 89 04 24              mov    %eax,(%esp) 

 457: e8 f8 fe ff ff        call   354 <puts@plt> 

 45c: 8d 83 fc e4 ff ff     lea    -0x1b04(%ebx),%eax 

 462: 89 04 24              mov    %eax,(%esp) 

 465: e8 ea fe ff ff        call   354 <puts@plt> 

 46a: 83 c4 04              add    $0x4,%esp 

 46d: 5b                    pop    %ebx 

 46e: 5d                    pop    %ebp 

 46f: c3                    ret 

 

The operands of the CALL instructions are different and intelligent, and this means that they indicate 

something. It is not a simple padding anymore. Also it is worth mentioning that the recording of 0x1FF4 (0x1BAC + 

0x448) into the EBX Registry is performed before the call of the puts() function. The debugger helps to enquiry the 

initial EBX value, which is equal to 0x448. It means that it will prove useful later. 0x354 address leads us to the very 

interesting “.plt” section, which is marked as executable as well as “.text”. Here it is: 

Disassembly of section .plt: 

 

00000334 <__gmon_start__@plt-0x10>: 

 334: ff b3 04 00 00 00     pushl  0x4(%ebx) 

 33a: ff a3 08 00 00 00     jmp    *0x8(%ebx) 

 340: 00 00                 add    %al,(%eax) 

 ... 

 

00000344 <__gmon_start__@plt>: 

 344: ff a3 0c 00 00 00     jmp    *0xc(%ebx) 

 34a: 68 00 00 00 00        push   $0x0 

 34f: e9 e0 ff ff ff        jmp    334 <_init+0x30> 

 

00000354 <puts@plt>: 

 354: ff a3 10 00 00 00     jmp    *0x10(%ebx) 

 35a: 68 08 00 00 00        push   $0x8 

 35f: e9 d0 ff ff ff        jmp    334 <_init+0x30> 

 

00000364 <__cxa_finalize@plt>: 

 364: ff a3 14 00 00 00     jmp    *0x14(%ebx) 

 36a: 68 10 00 00 00        push   $0x10 

 36f: e9 c0 ff ff ff        jmp    334 <_init+0x30> 

 

We detect three instructions at the 0x354 address, which we are interested in. In the first of them, the 

unconditional jump to address indicated by EBX (0x1FF4) plus 0x10 is performed. Having made simple calculations, 

we get the 0x2004 pointer value. These addresses are in the “.got.plt” section. 

Disassembly of section .got.plt: 

 



00001ff4 <.got.plt>: 

    1ff4: 20 1f                 and    %bl,(%edi) 

 ... 

    1ffe: 00 00                 add    %al,(%eax) 

    2000: 4a                    dec    %edx 

    2001: 03 00                 add    (%eax),%eax 

    2003: 00 5a 03              add    %bl,0x3(%edx) 

    2006: 00 00                 add    %al,(%eax) 

    2008: 6a 03                 push   $0x3 

 ... 

 

The most interesting thing happens when we dereference this pointer and finally get the unconditional jump 

address, which is equal to 0x35A. But this is in essence the next instruction! Why should we perform such difficult 

manipulations and refer to the “.got.plt” section just to jump to the next instruction? What is PLT and GOT at all? 

PLT stands for Procedure Linkage Table. It exists in both executables and libraries. It is an array of stubs, one 

per imported function call. 

PLT[n+1]: jmp    *GOT[n+3] 

          push   #n        @push n as a signal to the resolver 

          jmp    PLT[0] 

 

A subroutine call to PLT[n+1] will result jumping indirect through GOT[n+3]. When first invoked, GOT[n+3] 

points back to PLT[n+1] + 6, which is the PUSH\JMP sequence to PLT[0]. Going through the PLT[0], the resolver uses 

the argument on the stack to determine 'n' and resolves the symbol 'n'. The resolver code then repairs GOT[n+3] to 

point directly at the target subroutine and finally calls it. And each next call to PLT[n+1], it will be directed to the 

target subroutine without being resolved by fixed JMP instruction. 

The first PLT entry is slightly different, and is used to form a trampoline to the fix up code.  

PLT[0]: push    &GOT[1] 

        jmp     GOT[2]     @points to resolver() 

Thread is directed to the resolver routine. 'n' is already in the stack, and address of GOT[1] gets added to the 

stack.  This is the way how the resolver (located in /lib/ld-linux.so.2) can determine, which library is asking for its 

service. 

GOT is the Global Offset Table. The first 3 entries of it are special\reserved. When the GOT is set up for the 

first time, all the GOT entries relating to PLT fixups are pointing back to the code at PLT[0].  

The special entries in the GOT are: 

GOT[0]  linked list pointer used by the dynamic loader  

GOT[1]  pointer to the relocation table for this module  

GOT[2]  pointer to the fixup\resolver code, located in the ld-linux.so.2 library  

GOT[3] 

....   indirect function call helpers, one per imported function  

GOT[3+M] 

GOT[3+M+1] 

......  indirect pointers to the global data references, one per imported global symbol 



Each library and executable gets its own PLT and GOT array. 

 

 

The relocation of R_386_JUMP_SLOT type, which was used in the libtest2.so library, works in the described 

way. Other types of relocation refer to the static linking that is why we do not need them. 

The difference between the code, which depends on the position of loading to the memory, and the one that 

does not depend on it (PIC) consists in the methods of allowing of the call of imported functions. 

 

2.3 Some useful conclusions 
Let’s make some useful conclusions: 

 You can get all the information about imported and exported functions in the “.dynsym” section 

 If the module was compiled in the PIC mode ( -fPIC key), the calls of the imported functions are performed 
via PLT and GOT;  the relocation will be performed only once for each function and will be applied to the 
first instruction of a specific element in PLT. Information about such relocation can be found in the “.rel.plt” 
section 

 If the –fPIC key was not used during the library compilation, the relocations are performed on the operand 
of each relative CALL instruction as many times as the calls of some imported function are performed in the 
code. Information about such relocation can be found in the “.rel.dyn” section 

Note: the –fPIC compilation key is required for the 64-bit architecture. It means that the allowing of the calls 

of imported functions is always performed via PLT\GOT in the 64-bit libraries. Sections with 

relocations are called “.rela.plt” and “.rela.dyn” on such architecture. 



3. The solution 
You have to know the following things to perform the redirections of the imported function in some dynamic 

link library: 

1) The path to this library in the file system 

2) The virtual address at which it is loaded  

3) The name of the function to be replaced 

4) The address of the substitute function 

Also it is necessary to get the address of the original function in order to perform the backward redirection 

and thus to return everything on its place. 

The prototype of the function for the redirection in the C language is as follows: 

void *elf_hook(char const *library_filename, void const *library_address, char const *function_name, void 

const *substitution_address); 

 

3.1 What is the algorithm of redirection? 
Here is the algorithm of the work of the redirection function: 

1) Open the library file. 

2) Store the index of the symbol in the “.dynsym” section, whose name corresponds to the name of the 
required function. 

3) Look through the “.rel.plt” section and search for the relocation for the symbol with the specified index. 

4) If such symbol is found, save its original address in order to restore it from the function later. Then write 
the address of the substitute function in the place that was specified in the relocation. This place is 
calculated as the sum of the address of the load of the library into the memory and the offset in the 
relocation. That is all. The substitution of the function address is performed. The redirection will be 
performed every time at the call of this function by the library. Exit the function and restore the address 
of the original symbol. 

5) If such symbol is not found in the “.rel.plt” section, search for it in the “rel.dyn” section likewise. But 
remember that in the “rel.dyn” section of relocations the symbol with the required index can be found 
not once. That is why you should not terminate the search loop after the first redirection. But you can 
store the address of the original symbol at the first coincidence and not to calculate it anymore, it will 
not change anyway. 

6) Restore the address of the original function or just NULL if the function with the required name was not 
found. 

The code of this function in the C language is displayed below: 

void *elf_hook(char const *module_filename, void const *module_address, char const *name, void const 

*substitution) 

{ 

    static size_t pagesize; 

 

    int descriptor;  //file descriptor of shared module 

 

    Elf_Shdr 

    *dynsym = NULL,  // ".dynsym" section header 

    *rel_plt = NULL,  // ".rel.plt" section header 



    *rel_dyn = NULL;  // ".rel.dyn" section header 

 

    Elf_Sym 

    *symbol = NULL;  //symbol table entry for symbol named "name" 

 

    Elf_Rel 

    *rel_plt_table = NULL,  //array with ".rel.plt" entries 

    *rel_dyn_table = NULL;  //array with ".rel.dyn" entries 

 

    size_t 

    i, 

    name_index = 0,  //index of symbol named "name" in ".dyn.sym" 

    rel_plt_amount = 0,  // amount of ".rel.plt" entries 

    rel_dyn_amount = 0,  // amount of ".rel.dyn" entries 

    *name_address = NULL;  //address of relocation for symbol named "name" 

 

    void *original = NULL;  //address of the symbol being substituted 

 

    if (NULL == module_address || NULL == name || NULL == substitution) 

        return original; 

 

    if (!pagesize) 

        pagesize = sysconf(_SC_PAGESIZE); 

 

    descriptor = open(module_filename, O_RDONLY); 

 

    if (descriptor < 0) 

        return original; 

 

    if ( 

        section_by_type(descriptor, SHT_DYNSYM, &dynsym) ||  //get ".dynsym" section 

        symbol_by_name(descriptor, dynsym, name, &symbol, &name_index) ||  //actually, we need only the 

index of symbol named "name" in the ".dynsym" table 

        section_by_name(descriptor, REL_PLT, &rel_plt) ||  //get ".rel.plt" (for 32-bit) or ".rela.plt" 

(for 64-bit) section 

        section_by_name(descriptor, REL_DYN, &rel_dyn)  //get ".rel.dyn" (for 32-bit) or ".rela.dyn" (for 

64-bit) section 

       ) 

    {  //if something went wrong 

        free(dynsym); 

        free(rel_plt); 

        free(rel_dyn); 

        free(symbol); 

        close(descriptor); 

 

        return original; 

    } 

//release the data used 

    free(dynsym); 

    free(symbol); 

 

    rel_plt_table = (Elf_Rel *)(((size_t)module_address) + rel_plt->sh_addr);  //init the ".rel.plt" array 

    rel_plt_amount = rel_plt->sh_size / sizeof(Elf_Rel);  //and get its size 

 

    rel_dyn_table = (Elf_Rel *)(((size_t)module_address) + rel_dyn->sh_addr);  //init the ".rel.dyn" array 

    rel_dyn_amount = rel_dyn->sh_size / sizeof(Elf_Rel);  //and get its size 

//release the data used 

    free(rel_plt); 

    free(rel_dyn); 

//and descriptor 

    close(descriptor); 

//now we've got ".rel.plt" (needed for PIC) table and ".rel.dyn" (for non-PIC) table and the symbol's index 

    for (i = 0; i < rel_plt_amount; ++i)  //lookup the ".rel.plt" table 

        if (ELF_R_SYM(rel_plt_table[i].r_info) == name_index)  //if we found the symbol to substitute in 

".rel.plt" 

        { 

            original = (void *)*(size_t *)(((size_t)module_address) + rel_plt_table[i].r_offset);  //save 

the original function address 

            *(size_t *)(((size_t)module_address) + rel_plt_table[i].r_offset) = (size_t)substitution;  

//and replace it with the substitutional 

 

            break;  //the target symbol appears in ".rel.plt" only once 

        } 



 

    if (original) 

        return original; 

//we will get here only with 32-bit non-PIC module 

    for (i = 0; i < rel_dyn_amount; ++i)  //lookup the ".rel.dyn" table 

        if (ELF_R_SYM(rel_dyn_table[i].r_info) == name_index)  //if we found the symbol to substitute in 

".rel.dyn" 

        { 

            name_address = (size_t *)(((size_t)module_address) + rel_dyn_table[i].r_offset);  //get the 

relocation address (address of a relative CALL (0xE8) instruction's argument) 

 

            if (!original) 

                original = (void *)(*name_address + (size_t)name_address + sizeof(size_t));  //calculate an 

address of the original function by a relative CALL (0xE8) instruction's argument 

 

            mprotect((void *)(((size_t)name_address) & (((size_t)-1) ^ (pagesize - 1))), pagesize, 

PROT_READ | PROT_WRITE);  //mark a memory page that contains the relocation as writable 

 

            if (errno) 

                return NULL; 

 

            *name_address = (size_t)substitution - (size_t)name_address - sizeof(size_t);  //calculate a 

new relative CALL (0xE8) instruction's argument for the substitutional function and write it down 

 

            mprotect((void *)(((size_t)name_address) & (((size_t)-1) ^ (pagesize - 1))), pagesize, 

PROT_READ | PROT_EXEC);  //mark a memory page that contains the relocation back as executable 

 

            if (errno)  //if something went wrong 

            { 

                *name_address = (size_t)original - (size_t)name_address - sizeof(size_t);  //then restore 

the original function address 

 

                return NULL; 

            } 

        } 

 

    return original; 

} 

 

A full implementation of this function with test examples is attached to this article. 

Let’s rewrite our test program: 

#include <stdio.h> 

#include <dlfcn.h> 

 

#include "elf_hook.h" 

 

#define LIBTEST1_PATH "libtest1.so"  //position dependent code (for 32 bit only) 

#define LIBTEST2_PATH "libtest2.so"  //position independent code 

 

void libtest1();  //from libtest1.so 

void libtest2();  //from libtest2.so 

 

int hooked_puts(char const *s) 

{ 

    puts(s);  //calls the original puts() from libc.so because our main executable module called "test" is 

intact by hook 

    puts("is HOOKED!"); 

} 

 

int main() 

{ 

    void *handle1 = dlopen(LIBTEST1_PATH, RTLD_LAZY); 

    void *handle2 = dlopen(LIBTEST2_PATH, RTLD_LAZY); 

    void *original1, *original2; 

 

    if (NULL == handle1 || NULL == handle2) 

        fprintf(stderr, "Failed to open \"%s\" or \"%s\"!\n", LIBTEST1_PATH, LIBTEST2_PATH); 

 

    libtest1();  //calls puts() from libc.so twice 



    libtest2();  //calls puts() from libc.so twice 

    puts("-----------------------------"); 

 

    original1 = elf_hook(LIBTEST1_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle1), "puts", hooked_puts); 

    original2 = elf_hook(LIBTEST2_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle2), "puts", hooked_puts); 

 

    if (NULL == original1 || NULL == original2) 

        fprintf(stderr, "Redirection failed!\n"); 

 

    libtest1();  //calls hooked_puts() twice 

    libtest2();  //calls hooked_puts() twice 

    puts("-----------------------------"); 

 

    original1 = elf_hook(LIBTEST1_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle1), "puts", original1); 

    original2 = elf_hook(LIBTEST2_PATH, LIBRARY_ADDRESS_BY_HANDLE(handle2), "puts", original2); 

 

    if (NULL == original1 || original1 != original2)  //both pointers should contain hooked_puts() address 

now 

        fprintf(stderr, "Restoration failed!\n"); 

 

    libtest1();  //again calls puts() from libc.so twice 

    libtest2();  //again calls puts() from libc.so twice 

 

    dlclose(handle1); 

    dlclose(handle2); 

 

    return 0; 

} 

  

Compile it: 

gcc -g3 -m32       -shared -o libtest1.so libtest1.c 

gcc -g3 -m32 -fPIC -shared -o libtest2.so libtest2.c 

 

gcc -g3 -m32 -L$PWD -o test test.c elf_hook.c -ltest1 -ltest2 -ldl 

 

Then start it: 

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH 

./test 

 

The output will be the following: 

libtest1: 1st call to the original puts() 

libtest1: 2nd call to the original puts() 

libtest2: 1st call to the original puts() 

libtest2: 2nd call to the original puts() 

----------------------------- 

libtest1: 1st call to the original puts() 

is HOOKED! 

libtest1: 2nd call to the original puts() 

is HOOKED! 

libtest2: 1st call to the original puts() 

is HOOKED! 

libtest2: 2nd call to the original puts() 

is HOOKED! 

----------------------------- 

libtest1: 1st call to the original puts() 

libtest1: 2nd call to the original puts() 

libtest2: 1st call to the original puts() 

libtest2: 2nd call to the original puts() 

 

It indicates the entire fulfillment of the task, which was formulated in the first part of the article. 

 



3.2 How to get the address, which a library has been loaded to? 
This interesting question arises during the detailed examination of the function prototype for the redirection. 

After some research I managed to find out the method of discovering the address of the library loading by its 

descriptor, which is returned by the dlopen() function. It is performed with the help of such macro: 

#define LIBRARY_ADDRESS_BY_HANDLE(dlhandle) ((NULL == dlhandle) ? NULL : (void*)*(size_t const*)(dlhandle)) 

 

3.3 How to write and restore a new function address? 
There are no problems with the rewriting of the addresses, which the relocations from the “.rel.plt” section 

point to. In fact, the operand of the JMP instruction of the corresponding element from the “.plt” section is 

rewritten. And the operands of such instruction are just addresses. 

The situation is more interesting with the applying of relocations to the operands of the relative CALL 

instructions (E8 code). Their jump addresses are calculated by formula: 

address_of_a_function = CALL_argument + address_of_the_next_instruction 

Thus, we can find out the address of the original function. Above mentioned formula gives us the value, 

which has to be written as an argument for the relative CALL in order to perform the call of the necessary function: 

CALL_argument  = address_of_a_function - address_of_the_next_instruction 

The “.rel.dyn” section gets into the segment, which is marked as “R E”. It means that you cannot simply write 

addresses. It is necessary to add the right for record for the page, which the relocation falls to. Do not forget to 

return everything on its places after the redirection. It is performed with the help of the mprotect() function. The 

first parameter of this function is the address of the page, which contains the relocation. It must be always multiple 

of the page size. It is not difficult to calculate it: you should just zero some low bytes of the relocation address 

(depending on the page size): 

page_address = (size_t)relocation_address & ( ((size_t) -1) ^ (pagesize - 1) ); 

For example, for pages of 4096 (0x1000) byte size on the 32-bit system, the expression above will be 

converted to: 

page_address = (size_t)relocation_address & (0xFFFFFFFF ^ 0xFFF) = (size_t)relocation_address & 0xFFFFF000; 

The size of one page can be obtained by calling sysconf(_SC_PAGESIZE). 

 



4. Instead of conclusion 
As an exercise, you can write a plug-in for Firefox, which will redirect to itself all network calls of, e.g., Adobe 

Flash plug-in (libflashplayer.so). Thus, you can control all Adobe Flash traffic in the Internet from the Firefox process 

without the influence on the network calls of the explorer itself and other plug-ins. 

Now you have a very convenient tool for the redirection of calls of the imported functions in the ELF dynamic 

link libraries. Good luck! 

Downloads 

http://www.apriorit.com/our-experience/articles/9-sd-articles/181-elf-hook 

 

http://www.apriorit.com/our-experience/articles/9-sd-articles/181-elf-hook


5. Useful links 
 http://www.skyfree.org/linux/references/ELF_Format.pdf 

 http://en.wikipedia.org/wiki/Executable_and_Linkable_Format 

 http://vxheavens.com/lib/vsc06.html 

 http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html 

 http://www.slideshare.net/sanjivmalik/dynamic-linker-presentation 

 http://www.codeproject.com/KB/cpp/shared_object_injection_1.aspx 

 http://www.linuxjournal.com/article/1060 
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