

F3
Concurrent Session
Friday 10/26/2007 10:00 AM

JUMP TO:

 Biographical Information

 The Presentation

50 Ways to . . . Improve Test
Automation

Presented by:

Mark Fewster,
Grove Consultants

Presented at:
The International Conference on Software Testing Analysis and Review

October 22-26, 2007; Anaheim, CA, USA

330 Corporate Way, Suite 300 , Orange Park, FL 32043
888-268-8770 904-278-0524 sqeinfo@sqe.com www.sqe.com

mailto:sqeinfo@sqe.com
http://www.sqe.com

Mark Fewster
Mark has 20 something years of industrial experience in software testing. Since
joining Grove Consultants in 1993, he has provided consultancy and training in
software testing, particularly in the application of testing techniques and test
automation. He has published papers in respected journals and is a popular speaker
at national and international conferences and seminars. Mark is co-author of the
book "Software Test Automation” with Dorothy Graham, published by Addison-
Wesley. In 2006 he received the Mercury BTO Innovation in Quality Award.

Fifty Ways to ...
Improve Test Automation

Prepared and presented by

Mark Fewster
Grove Consultants
Llwyncynhwyra, Cwmdu
Llandeilo, SA19 7EW, UK

Tel: +44 1558 685180
email: mark@grove.co.uk

www.grove.co.uk
© Grove Consultants, 2007

STAR West 2007

Key Areas

planning and management
scripting techniques
comparison methods
pre- and post-processing
testware architecture
testware maintenance

Planning and management

weaknesses
-- mixed (or no) views on mixed (or no) views on

objective(sobjective(s))
-- unclear (or no) specific unclear (or no) specific

responsibilitiesresponsibilities
-- subjective measurementsubjective measurement
-- vague (or no) vague (or no)

development plansdevelopment plans
-- autonomous resourceautonomous resource

improvement areas
-- define, quantify, agree define, quantify, agree

objectivesobjectives
-- assign specific assign specific

responsibilitiesresponsibilities
-- objectively measure objectively measure

benefits & costsbenefits & costs
-- improve automation improve automation

capabilitiescapabilities
-- become service providerbecome service provider

Management improvements

define, quantify, agree objectives
-- must be appropriate and specific to automationmust be appropriate and specific to automation

•• e.g. reduce automated test cost, increase e.g. reduce automated test cost, increase
automated test benefit, contribute to testingautomated test benefit, contribute to testing

•• notnot e.g. reduce elapsed time, find more defects, e.g. reduce elapsed time, find more defects,
improve software qualityimprove software quality

assign specific responsibilities
-- separate responsibilities of testing and automatingseparate responsibilities of testing and automating

•• divide one persondivide one person’’s time between testing and s time between testing and
automating if necessaryautomating if necessary

Management improvements

objectively measure benefits and costs
-- equivalent manual test effort (EMTE)equivalent manual test effort (EMTE)

•• easy to measure and understandeasy to measure and understand

-- build, failure analysis and maintenance costsbuild, failure analysis and maintenance costs
•• major cost factors for automationmajor cost factors for automation

improve automation capabilities
-- more flexibility, better reporting, new capabilitiesmore flexibility, better reporting, new capabilities
-- greater scope greater scope –– seek opportunities beyond major seek opportunities beyond major

tools (e.g. utilities to assist with tester chores)tools (e.g. utilities to assist with tester chores)

Further improvement ideas

pilot (yes, another one)
-- small scale (1 small scale (1 –– 3 months for 2 or 3 people)3 months for 2 or 3 people)
-- not on critical path but able to contributenot on critical path but able to contribute

•• freedom to experiment importantfreedom to experiment important

-- weekly milestonesweekly milestones
•• daily targets?daily targets?

-- specific improvement goalsspecific improvement goals
•• e.g. reduce build cost (explore scripting techs.) e.g. reduce build cost (explore scripting techs.)

reduce maintenance cost (explore test design)reduce maintenance cost (explore test design)

Scripting techniques

weaknesses
-- chaotic / disorganisedchaotic / disorganised
-- lack of coding standards lack of coding standards

/ guidelines/ guidelines
-- too much test specific too much test specific

scripting (lack of reuse)scripting (lack of reuse)
-- little or no control over little or no control over

updatesupdates

improvement areas
-- consistancyconsistancy / standards / / standards /

guidelinesguidelines
-- reviews to check reviews to check

acceptabilityacceptability
-- appropriate techniquesappropriate techniques
-- configuration configuration

managementmanagement

Scripting improvements

scripting (coding) standards / guidelines
-- developed by consensusdeveloped by consensus

•• identify selection of good examples, agree what identify selection of good examples, agree what
makes them goodmakes them good

–– naming conventions (variable, functions, scripts)naming conventions (variable, functions, scripts)

•• measure and check (automated / tool supported)measure and check (automated / tool supported)
–– size, complexity, header, comment/code ratiosize, complexity, header, comment/code ratio

•• justify standards, templatesjustify standards, templates
formally review samples
-- informally review (buddy check) othersinformally review (buddy check) others

Scripting improvements

appropriate techniques
-- structured scripting, datastructured scripting, data--driven, keyworddriven, keyword--drivendriven

•• perhaps combine techniquesperhaps combine techniques

-- common language for defining testscommon language for defining tests
•• driven by testers, not automatorsdriven by testers, not automators

configuration management
-- at least source code controlat least source code control
-- procedures / processesprocedures / processes
-- tool support essentialtool support essential

Comparison methods

weaknesses
-- lack of reuselack of reuse
-- too few solutions / lack too few solutions / lack

of ingenuityof ingenuity
-- too many different too many different

solutions (for same solutions (for same
problem)problem)

-- too much work for too much work for
testerstesters

improvement areas
-- identify definitive identify definitive

comparison comparison reqreq’’ss..
-- be creative, divide be creative, divide

complex problemscomplex problems
-- standardisestandardise
-- tool support tester taskstool support tester tasks

Comparison improvements

identify definitive comparison requirements
-- finite set of output types for each applicationfinite set of output types for each application

be creative, divide complex problems
-- undertake complex comparisons in bitsundertake complex comparisons in bits

•• divide output into separate piecesdivide output into separate pieces
–– e.g. report header and bodye.g. report header and body

•• compare different aspects separatelycompare different aspects separately
–– e.g. key transactions and overall balancee.g. key transactions and overall balance

-- use scripting languages and regular expressionsuse scripting languages and regular expressions
•• e.g. Perl, Python, Ruby, etc.e.g. Perl, Python, Ruby, etc.

Comparison improvements

standardise
-- define standard comparisons for each output typedefine standard comparisons for each output type
-- implement a comparison process for each oneimplement a comparison process for each one

tool support tester tasks
-- testers need only state which outputs are testers need only state which outputs are

compared and with which comparison processcompared and with which comparison process
•• tools should determine location of filestools should determine location of files

–– requires consistent testware architecturerequires consistent testware architecture

Pre- and post-processing

weaknesses
-- not formalised (not not formalised (not

recognised)recognised)
-- manual set up and clear manual set up and clear

up prone to human errorup prone to human error
-- test specific test specific

implementations implementations
duplicate build and duplicate build and
maintenance effortmaintenance effort

-- lots of automated tests lots of automated tests
but little automated but little automated
testingtesting

improvement areas
-- recognise and formalise recognise and formalise

setup and clear up taskssetup and clear up tasks
-- automate setup and clear automate setup and clear

up tasksup tasks
-- encourage reuseencourage reuse
-- automate as many nonautomate as many non--

execution tasks as execution tasks as
practicalpractical

Pre & post-processing improvements

recognise and formalise setup and clear up
tasks
-- many tasks similarmany tasks similar

•• e.g. move, copy, create, delete, converte.g. move, copy, create, delete, convert
automate setup and clear up tasks
-- easy to doeasy to do
-- easy to make genericeasy to make generic

Pre & post-processing improvements

encourage reuse

automate as many non-execution tasks as
practical
-- including checkingincluding checking

Testware architecture

weaknesses
-- disorganised / scattered disorganised / scattered

testware makes tool testware makes tool
support difficultsupport difficult

-- hard to find scripts / data hard to find scripts / data
for reuse and for reuse and
maintenancemaintenance

-- unclear how to name unclear how to name
and place new artefactsand place new artefacts

-- difficult to track changes difficult to track changes
and control updatesand control updates

improvement areas
-- structured and consistent structured and consistent

testware organisationtestware organisation
-- organise testware around organise testware around

testers, not test toolstesters, not test tools
-- clear (documented) clear (documented)

naming conventionsnaming conventions
-- keep all testware under keep all testware under

configuration configuration
managementmanagement

Testware architecture improvements

structured and consistent testware
organisation
-- consistent across applications, projects, etc.consistent across applications, projects, etc.
-- enables reuse and sharing of tools and methodsenables reuse and sharing of tools and methods
-- makes tool support much easier and more makes tool support much easier and more

effectiveeffective
organise testware around testers, not tools
-- ergonomics of testware: reduce cost of test workergonomics of testware: reduce cost of test work

Testware architecture improvements

clear (documented) naming conventions
-- removes all the guess workremoves all the guess work

keep all testware under configuration
management
-- at least version control but more sophisticated at least version control but more sophisticated

solutions add more value (reduce human error)solutions add more value (reduce human error)
•• map versions of testware to versions of softwaremap versions of testware to versions of software

-- helps with estimation of maintenance efforthelps with estimation of maintenance effort

Testware maintenance

weaknesses
-- more reactive than more reactive than

proactiveproactive
-- maintenance costs maintenance costs

regarded as inevitable, regarded as inevitable,
and so unchallengedand so unchallenged

-- true costs not measuredtrue costs not measured
-- maintenance effort not maintenance effort not

well supported by toolswell supported by tools

improvement areas
-- manage and monitor manage and monitor

testware maintenancetestware maintenance
-- consider maintenance consider maintenance

implications during test implications during test
designdesign

-- measure maintenance measure maintenance
costs and learncosts and learn

-- provide tool support for provide tool support for
maintenance tasksmaintenance tasks

Testware maintenance improvements

manage and monitor testware maintenance
-- identify most vulnerable tests / applicationsidentify most vulnerable tests / applications

•• by typeby type

-- focus improvement effort on maintenance issuesfocus improvement effort on maintenance issues
•• spend some time investigating solutionsspend some time investigating solutions

consider maintenance implications during
test design
-- identify software changes with greatest impactidentify software changes with greatest impact
-- implement automation to minimise their impactimplement automation to minimise their impact

Testware maintenance improvements

measure maintenance costs and learn
-- measure costsmeasure costs

•• most frequent / largest maintenance tasksmost frequent / largest maintenance tasks
•• as proportion of EMTEas proportion of EMTE

provide tool support for maintenance tasks
-- for most frequent / time consuming tasksfor most frequent / time consuming tasks
-- some may be onesome may be one--off (single use)off (single use)

•• needs programming skill (right place and time)needs programming skill (right place and time)

Summary
many aspects of test automation to consider
-- management, scripting, processing, architecture, management, scripting, processing, architecture, maintmaint..

most fundamental pitfalls
-- objectives and responsibilitiesobjectives and responsibilities

test automation is an ongoing process
-- much to learn, new opportunities to harvestmuch to learn, new opportunities to harvest

invest in automation, don’t stand still
-- big rewards are possiblebig rewards are possible

Fifty Ways to ... Improve Test Automation

	TITLE PAGE
	BIO
	PRESENTATION

