
Comparing Detection Methods For Software Requirements

Inspections: A Replication Using Professional Subjects

Adam Porter� Lawrence Votta

Computer Science Department Software Production Research Department

University of Maryland Lucent Technologies

College Park, Maryland 20742 Naperville, Illinois 60566

aporter@cs.umd.edu votta@research.bell-labs.com

Abstract

Software requirements speci�cations (SRS) are often validated manually. One such process is inspection, in
which several reviewers independently analyze all or part of the speci�cation and search for faults. These faults
are then collected at a meeting of the reviewers and author(s).

Usually, reviewers use Ad Hoc or Checklist methods to uncover faults. These methods force all reviewers to
rely on nonsystematic techniques to search for a wide variety of faults. We hypothesize that a Scenario-based
method, in which each reviewer uses di�erent, systematic techniques to search for di�erent, speci�c classes of
faults, will have a signi�cantly higher success rate.

In previous work we evaluated this hypothesis using 48 graduate students in computer science as subjects.
We now have replicated this experiment using 18 professional developers from Lucent Technologies as subjects.

Our goals were to (1) extend the external credibility of our results by studying professional developers, and to (2)
compare the performances of professionals with that of the graduate students to better understand how generalizable
the results of the less expensive student experiments were.

For each inspection we performed four measurements: (1) individual fault detection rate, (2) team fault
detection rate, (3) percentage of faults �rst identi�ed at the collection meeting (meeting gain rate), and (4)
percentage of faults �rst identi�ed by an individual, but never reported at the collection meeting (meeting loss
rate).

For both the professionals and the students the experimental results are that (1) the Scenario method had a
higher fault detection rate than either Ad Hoc or Checklist methods, (2) Checklist reviewers were no more e�ective
than Ad Hoc reviewers, (3) Collection meetings produced no net improvement in the fault, and detection rate {
meeting gains were o�set by meeting losses,

Finally, although speci�c measures di�ered between the professional and student populations, the outcomes of
almost all statistical tests were identical. This suggests that the graduate students provided an adequate model of
the professional population and that the much greater expense of conducting studies with professionals may not
always be required.

Keywords: Inspection, Controlled Experiment, Replication.

�This work is supported in part by a National Science Foundation Faculty Early Career Development Award CCR{9501354.

1 Introduction

One way of validating a software requirements speci�cation (SRS) is to submit it to an inspection by a team of

reviewers. Many organizations use a three-step inspection procedure for eliminating faults : detection, collection,

and repair1. [11, 19] A team of reviewers reads the SRS, identifying as many faults as possible. Newly identi�ed

faults are collected, usually at a team meeting, and then sent to the document's authors for repair.

We are focusing on the methods used to perform the �rst step in this process, fault detection. For this

article, we de�ne a fault detection method to be a set of fault detection techniques coupled with an assignment

of responsibilities to individual reviewers.

Fault detection techniques may range in prescriptiveness from intuitive, nonsystematic procedures, such as Ad

Hoc or Checklist techniques, to explicit and highly systematic procedures, such as formal proofs of correctness.

A reviewer's individual responsibility may be general { to identify as many faults as possible { or speci�c {

to focus on a limited set of issues such as ensuring appropriate use of hardware interfaces, identifying untestable

requirements, or checking conformity to coding standards.

These individual responsibilities may be coordinated among the members of a review team. When they are

not coordinated, all reviewers have identical responsibilities. In contrast, the reviewers in coordinated teams may

have separate and distinct responsibilities.

In practice, reviewers often use Ad Hoc or Checklist detection techniques to discharge identical, general

responsibilities. Some authors, notably Parnas and Weiss[15], have argued that inspections would be more

e�ective if each reviewer used a di�erent set of systematic detection techniques to discharge di�erent, speci�c

responsibilities.

1.1 Preliminary Research

In earlier work [16] we conducted an experiment to compare alternative detection methods for software inspec-

tions. Our results suggest that the choice of fault detection method signi�cantly a�ects inspection performance.

Our subjects for that study were 48 graduate students in computer science. Initially we use students rather

than professional because cost considerations severely limit our opportunities to conduct studies with professional

1Depending on the exact form of the inspection, they are sometimes called reviews or walkthroughs. For a more thorough
description of the taxonomy see [11] pp. 171� and [12].

1

developers. Therefore we prefer to re�ne our experimental designs and measurement strategies in the university

before using them in industry. This approach also allows us to do a kind of bulk screening of our research

hypotheses. That is, we can conduct several studies in university, but only rerun the most promising ones in

industry. Intuitively, we feel that hypotheses that don't hold up in the university setting are unlikely to do so in

the industrial setting.

Of course, this reasoning is asymmetrical. It may or may not be true that results derived in the university

apply in industry. Therefore, we still need to conduct studies with professional subjects. Consequently, to

improve the external validity of our initial results we have replicated the experiment using professional software

developers as subjects. We have also compared the performances of the student and professional populations

to better understand how generalizable the original results were. This is important because experiments using

professional subjects are far more costly than those using student subjects.

Below we describe the relevant literature, several alternative fault detection methods which motivated our

study, our research hypothesis, and our experimental observations, analysis and conclusions.

1.2 Inspection Literature

A summary of the origins and the current practice of inspections may be found in Humphrey [11]. Consequently,

we will discuss only work directly related to our current e�orts.

Fagan[7] de�ned the basic software inspection process. While most writers have endorsed his approach[4,

11], Parnas and Weiss are more critical [15]. In part, they argue that e�ectiveness su�ers because individual

reviewers are not assigned speci�c responsibilities and because they lack systematic techniques for meeting those

responsibilities.

Some might argue that Checklists are systematic because they help de�ne each reviewer's responsibilities and

suggest ways to identify faults. Certainly, Checklists often pose questions that help reviewers discover faults.

However, we argue that the generality of these questions and the lack of concrete strategies for answering them

makes the approach nonsystematic.

To address these concerns { at least for software designs { Parnas and Weiss introduced the idea of active

design reviews. The principal characteristic of an active design review is that each individual reviewer reads for a

speci�c purpose, using specialized questionnaires. This proposal forms the motivation for the detection method

2

proposed in Section 2.2.2.

1.3 Detection Methods

Ad Hoc and Checklist methods are two frequently used fault detection methods. With Ad Hoc detection methods,

all reviewers use nonsystematic techniques and are assigned the same general responsibilities.

Checklist methods are similar to Ad Hoc, but each reviewer receives a checklist. Checklist items capture

important lessons learned from previous inspections within an environment or application. Individual checklist

items may enumerate characteristic faults, prioritize di�erent faults, or pose questions that help reviewers discover

faults, such as \Are all interfaces clearly de�ned?" or \If input is received at a faster rate than can be processed,

how is this handled?" The purpose of these items is to focus reviewer responsibilities and suggest ways for

reviewers to identify faults.

1.4 Hypothesis

We believe that an alternative approach which gives individual reviewers speci�c, orthogonal detection responsi-

bilities and specialized techniques for meeting them will result in more e�ective inspections.

To explore this alternative we developed a set of fault-speci�c techniques called Scenarios { collections of

procedures for detecting particular classes of faults. Each reviewer executes a single scenario and multiple

reviewers are coordinated to achieve broad coverage of the document.

Our underlying hypothesis is depicted in Figure 1: that nonsystematic techniques with general reviewer

responsibility and no reviewer coordination, lead to overlap and gaps, thereby lowering the overall inspection ef-

fectiveness; while systematic approaches with speci�c, coordinated responsibilities reduce gaps, thereby increasing

the overall e�ectiveness of the inspection.

2 The Experiment

To evaluate our systematic inspection hypothesis we designed and conducted a multi-trial experiment. The goals

of this experiment were twofold: to characterize the behavior of existing approaches and to assess the potential

bene�ts of Scenario-based methods. Originally we ran the experiment twice. Both runs used 24 subjects each {

students taking a graduate course in formal methods who acted as reviewers. We ran the experiment a third time

3

SYSTEMATIC
SELECTIVE
DISTINCT

NONSYSTEMATIC

IDENTICAL
GENERAL

Figure 1: Systematic Inspection Research Hypothesis. This �gure represents a software requirements
speci�cation before and after a nonsystematic technique, general and identical responsibility inspection and a
systematic technique, speci�c and distinct responsibility inspection. The points and holes represent various faults.
The line-�lled regions indicate the coverage achieved by di�erent members of the inspection team. Our hypothesis
is that systematic technique, speci�c and coordinated responsibility inspections achieve broader coverage and
minimize reviewer overlap, resulting in higher fault detection rates and greater cost bene�ts than nonsystematic
methods.

as part of a professional training course at Lucent Technologies, using 18 professional developers as subjects.

Each complete experimental run consisted of (1) a training phase in which the subjects were taught inspection

methods and the experimental procedures, and in which they inspected a sample SRS, and (2) an experimental

phase in which the subjects conducted two monitored inspections.

2.1 Experimental Design

The design of the experiment is somewhat unusual. To avoid misinterpreting the data it is important to under-

stand the experiment and the reasons for certain elements of its design 2.

2.1.1 Variables

The experiment manipulates four independent variables:

1. the detection method used by a reviewer (Ad Hoc, Checklist, or Scenario);

2. the speci�cation to be inspected (two are used during the experiment);

3. the inspection round (each reviewer participates in two inspections during the experiment);

4. the order in which the speci�cations are inspected (either speci�cation can be inspected �rst).

2See Judd, et al. [13], chapter 4 for an excellent discussion of randomized social experimental designs.

4

The detection method is our treatment variable. The other variables allow us to assess several potential

threats to the experiment's internal validity. For each inspection we measure four dependent variables:

1. the individual fault detection rate,

2. the team fault detection rate 3,

3. the percentage of faults �rst identi�ed at the collection meeting (meeting gain rate), and

4. the percentage of faults �rst identi�ed by an individual, but never reported at the collection meeting

(meeting loss rate).

2.1.2 Design

The purpose of this experiment is to compare the Ad Hoc, Checklist, and Scenario detection methods for in-

specting software requirements speci�cations.

When comparing multiple treatments, experimenters frequently use fractional factorial designs. These designs

systematically explore all combinations of the independent variables, allowing extraneous factors such as team

ability, speci�cation quality, and learning to be measured and eliminated from the experimental analysis.

Had we used such a design each team would have participated in three inspection rounds, reviewing each of

three speci�cations and using each of three methods exactly once. The order in which the methods are applied

and the speci�cations are inspected would have been dictated by the experimental design.

Such designs are unacceptable for this study because they require some teams to use the Ad Hoc or Checklist

method after they have used the Scenario method. Since the Ad Hoc and Checklist reviewers create their own fault

detection techniques during the inspection (based on their experience or their understanding of the checklist),

our concern was that using the Scenario method in an early round might imperceptibly distort the use of the

other methods in later rounds. Such in
uences would be undetectable because, unlike the Scenario methods, the

Ad Hoc and Checklist methods do not require reviewers to perform speci�c, auditable tasks.

We chose a partial factorial design in which each team participates in two inspections, using some combination

of the three detection methods, but teams using the Scenario method in the �rst round must continue to use it

3The team and individual fault detection rates are the number of faults detected by a team or individual divided by the total
number of faults known to be in the speci�cation. The closer that value is to 1, the more e�ective the detection method. No faults
were intentionally seeded into the speci�cations. All faults are naturally occurring.

5

Round/Speci�cation
Round 1 Round 2

WLMS CRUISE WLMS CRUISE
ad hoc 1B, 1D, 1G 1A, 1C, 1E 1A, 3E 1D, 2B

Detection 1H, 2A, 3C 1F, 2D, 3E, 3F
Method checklist 2B, 3A 2E, 2G, 3D 1E, 2D, 2G, 3D 1B, 1H, 3C

scenarios 2C, 2F, 3B 2H 1F, 1C, 2E 1G, 2A, 2C
2H, 3F 2F, 3A, 3B

Table 1: This table shows the settings of the independent variables. Each team inspects two documents, the
WLMS and CRUISE, one per round, using one of the three detection methods. Teams from the �rst replication
are denoted 1A{1H, teams from the second replication are denoted 2A{2H. Teams from the third replication (the
professional subjects) are denoted 3A{3F.

in the second round. Table 1 shows the settings of the independent variables.

2.1.3 Threats to Internal Validity

A potential problem in any experiment is that some factor may a�ect the dependent variable without the re-

searcher's knowledge. This possibility must be minimized. We considered �ve such threats: (1) selection e�ects,

(2) maturation e�ects, (3) replication e�ects, (4) instrumentation e�ects, and (5) presentation e�ects.

Selection e�ects are due to natural variation in human performance. For example, random assignment of

subjects may accidentally create an elite team. Therefore, the di�erence in this team's natural ability will mask

di�erences in the detection method performance. Our strategy is to assign teams to detection methods on a

random basis. However, teams that used Scenarios in the �rst round were constrained to use them again in

the second round. This compromise provides more observations of the Scenario method and prevents the use of

the Scenario method from a�ecting the use of the Ad Hoc or Checklist methods. However we can't determine

whether or not the teams that used only the Scenarios have greater natural ability than the other teams.

Maturation e�ects are due to subjects learning as the experiment proceeds. We have manipulated the detection

method used and the order in which the documents are inspected so that the presence of this e�ect can be

discovered and taken into account.

Replication e�ects are caused by di�erences in the materials, participants, or execution of multiple replications.

In the student studies we limited this e�ect by using only �rst and second year graduate students as subjects

- rather than both undergraduate and graduate students. Across the student and professional populations we

attempted to maintain consistency in the experimental procedures used by packaging the experimental procedures

as a classroom laboratory exercise. This helped to ensure that similar steps were followed for all replications.

6

As we will show in Section 3, variation in the fault detection rate is not explained by selection, maturation, or

replication e�ects.

Finally, instrumentation e�ects may result from di�erences in the speci�cation documents. Such variation is

impossible to avoid, but we controlled for it by having each team inspect both documents.

2.1.4 Threats to External Validity

Threats to external validity limit our ability to generalize the results of our experiment to industrial practice.

We identi�ed three such threats:

1. The subjects in our initial runs may not be representative of software programming professionals. Although

more than half of the subjects have 2 or more years of industrial experience, they are graduate students,

not software professionals. Furthermore, as students they may have di�erent motivations for participating

in the experiment. This shouldn't be a problem in the replication using professional subjects.

2. The speci�cation documents may not be representative of real programming problems. Our experimental

speci�cations are atypical of industrial SRS in two ways. First, most of the experimental speci�cation

is written in a formal requirements notation. (See Section 2.2.) Although several groups at AT&T and

elsewhere are experimenting with formal notations [2, 8], it is not the industry's standard practice. Secondly,

the speci�cations are considerably smaller than industrial ones.

3. The inspection process in our experimental design may not be representative of software development

practice. We have modeled our experiment's inspection process after the one used in several development

organizations within AT&T [6]. Although this process is similar to a Fagan-style inspection, there are some

di�erences. One di�erence is that reviewers use the fault detection activity to to �nd faults, not just to

prepare for the inspection meeting. Another di�erence is that during the collection meeting reviewers are

given speci�c technical roles such as test expert or end-user only if the author feels there is a special need

for them.

Our process also di�ers slightly from the AT&T process. For example, the SRS authors are not present

at our collection meetings, although, in practice, they normally would be. Also, industrial reviewers may

bring more domain knowledge to an inspection than our student subjects did.

7

2.1.5 Analysis Strategy

Our analysis strategy had two steps. The �rst step was to �nd those independent variables that individually

explain a signi�cant amount of the variation in the team detection rate. The second step was to evaluate the

combined e�ect of the variables shown to be signi�cant in the initial analysis. Both analyses use standard

analysis of variance methods (see [5], pp. 165� and 210� or [9]). Once these relationships were discovered and

their magnitude estimated, we examined other data, such as correlations between the categories of faults detected

and the detection methods used that would con�rm or reject (if possible) a causal relationship between detection

methods and inspection performance.

2.2 Experiment Instrumentation

We developed several instruments for this experiment: three small software requirements speci�cations (SRS),

instructions and aids for each detection method, and a data collection form.

2.2.1 Software Requirements Speci�cations

The SRS we used describe three event-driven process control systems: an elevator control system, a water level

monitoring system, and an automobile cruise control system. Each speci�cation has four sections: Overview, Spe-

ci�c Functional Requirements, External Interfaces, and a Glossary. The overview is written in natural language,

while the other three sections are speci�ed using the SCR tabular requirements notation [10].

For this experiment, all three documents were adapted to adhere to the IEEE suggested format [12]. All

faults present in these SRS appear in the original documents or were generated during the adaptation process;

no faults were intentionally seeded into the document. The authors discovered 42 faults in the WLMS SRS; and

26 in the CRUISE SRS. The authors did not inspect the ELEVATOR SRS since it was used only for training

exercises.

Elevator Control System (ELEVATOR) [20] describes the functional and performance requirements of a

system for monitoring the operation of a bank of elevators (16 pages).

Water Level Monitoring System (WLMS) [18] describes the functional and performance requirements of

a system for monitoring the operation of a steam generating system (24 pages).

8

Automobile Cruise Control System (CRUISE) [14] describes the functional and performance require-

ments for an automobile cruise control system (31 pages).

2.2.2 Fault Detection Methods

To make a fair assessment of the three detection methods (Ad Hoc, Checklist, and Scenario) each method should

search for a well-de�ned population of faults. To accomplish this, we used a general fault taxonomy to de�ne the

responsibilities of Ad Hoc reviewers.

The checklist used in this study is a re�nement of the taxonomy. Consequently, Checklist responsibilities are

a subset of the Ad Hoc responsibilities.

The Scenarios are derived from the checklist by replacing individual Checklist items with procedures de-

signed to implement them. As a result, Scenario responsibilities are distinct subsets of Checklist and Ad Hoc

responsibilities. The relationship between the three methods is depicted in Figure 2.

The taxonomy is a composite of two schemes developed by Schneider, et al. [17] and Basili andWeiss [3]. Faults

are divided into two broad types: omission { in which important information is left unstated and commission {

in which incorrect, redundant, or ambiguous information is put into the SRS by the author. Omission faults were

further subdivided into four categories: Missing Functionality, Missing Performance, Missing Environment, and

Missing Interface. Commission faults were also divided into four categories: Ambiguous Information, Inconsistent

Information, Incorrect or Extra Functionality, and Wrong Section. (See Appendix A for complete taxonomy.)

We provided a copy of the taxonomy to each reviewer. Ad Hoc reviewers received no further assistance.

Checklist reviewers received a single checklist derived from the fault taxonomy. To generate the checklist

we populated the fault taxonomy with detailed questions culled from several industrial checklists. Thus, the

checklist items are similar in style to those found in several large organizations. All Checklist reviewers used the

same checklist. (See Appendix B for the complete checklist.)

Finally, we developed three groups of Scenarios. Each group of Scenarios was designed for a speci�c subset

of the Checklist items:

1. Data Type Inconsistencies (DF),

2. Incorrect Functionalities (IF),

3. Missing or Ambiguous Functionalities (MF).

9

Missing Performance

Missing Environment

Misisng Interface

MF

MP

ME

MI

AI

II

IF

WS

Ambiguous Information

Inconsistent Information

Wrong Section

Incorrect or Extra Func.

1.a Are all data objects mentioned in the ...
2.a Is the object’s specification consistent ...
...

1.a Are all values written to each output ...
1.b Identify at least one function that uses ...

Missing Functionality

...Commission

1.a Identify the required precision, response ...
2.a Is the specification of these events ...
...

ChecklistAd Hoc

Commission

Omission Omission

Scenario

Incorrect functionality

Data type inconsistencies

Missing (or ambiguous) functionality

Figure 2: Relationship Between Fault Detection Methods. The �gure depicts the relationship between
the fault detection methods used in this study. The vertical extent represents the coverage. The horizontal axis
labels the method and represents the degree of detail (the greater the horizontal extent the greater the detail).
Moving from Ad Hoc to Checklist to Scenario there is more detail and less coverage. The gaps in the Scenario
and Checklist columns indicate that the Checklist is a subset of the Ad Hoc and the Scenarios are a subset of
the Checklist.

After the experiment was �nished we applied the Scenarios ourselves to estimate how broadly they covered

the WLMS and CRUISE faults (i.e., what percentage of defects could be found if the Scenarios are properly

applied.) We estimated that the Scenarios address about half of the faults that are covered by the Checklist.

Appendix C contains the complete list of Scenarios.

2.2.3 Fault Report Forms

We also developed a Fault Report Form. Whenever a potential fault was discovered { during either the fault

detection or the collection activities { an entry was made on the form. The entry included four kinds of informa-

tion: Inspection Activity (Detection, Collection); Fault Location (Page and Line Numbers); Fault Disposition,

(Faults can be True Faults or False Positives); and a prose Fault Description. A small sample of a Fault Report

appears in Figure 3.

2.3 Experiment Preparation

We attempted to ensure that the operation of the experiment was the same for all replications of the experiment.

However, as we describe in the following Sections, we made several allowances for the schedules of our professional

subjects.

The participants were given two, 75 minute lectures on software requirements speci�cations, the SCR tabular

10

Figure 3: Reviewer Fault Report Form. This is a small sample of the fault report form completed during each
reviewer's fault detection. Faults number 10 and 11, found by reviewer 12 of team C for the WLMS speci�cation
are shown.

requirements notation, inspection procedures, the fault classi�cation scheme, and the �lling out of data collection

forms. The references for these lectures were Fagan [7], Parnas [15], and the IEEE Guide to Software Requirements

Speci�cations [1]. The participants were then assembled into three-person teams { see Section 2.1.3 for details.

Within each team, members were randomly assigned to act as the moderator, the recorder, or the reader during

the collection meeting.

2.4 Conducting the Experiment

2.4.1 Training

For the training exercise, each team inspected the ELEVATOR SRS. Individual team members read the speci-

�cation and recorded all faults they found on a Fault Report Form. Their e�orts were restricted to two hours.

Later we met with the participants and answered questions about the experimental procedures. Afterwards, each

team conducted a supervised collection meeting and �lled out a master Fault Report Form for the entire team.

The ELEVATOR SRS was not used in the remainder of the experiment.

11

2.4.2 Experimental Phase

This phase involved two inspection rounds. The instruments used were the WLMS and CRUISE speci�cations

discussed in Section 2.2.1, a checklist, three groups of fault-based scenarios, and the Fault Report Form. The

development of the checklist and scenarios is described in Section 2.2.2. The same checklist and scenarios were

used for both documents.

During the �rst Round, one half of the teams were asked to inspect the CRUISE speci�cation; the remaining

teams inspected the WLMS speci�cation. The detection methods used by each team are shown in Table 1. Fault

detection was limited to two hours, and all potential faults were reported on the Fault Report Form. After fault

detection, all materials were collected. For the student subjects we set aside 28 two-hour time slots during which

inspection tasks could be done. Participants performed each task within a single two-hour session and were not

allowed to work at other times. For the professional subjects we allowed each team to schedule their own working

times and to control access to their experimental materials. We asked them to follow the time guidelines and to

complete each task in one sitting. In post-experiment interviews none of the professional subjects told us that

they were unable to comply with our instructions.

Once all team members had �nished fault detection, the team's moderator arranged for the collection meeting.

At the collection meeting, the reader paraphrases each requirement. During this paraphrasing activity, reviewers

may bring up any issues found during preparation or discuss new issues. The team's recorder maintained the

team's master Fault Report Form. Collection was also limited to 2 hours and the entire Round was completed

in one week. The collection meeting process is the same regardless of which fault detection method was used

during fault detection.

The second Round was similar to the �rst except that teams who had inspected the WLMS during Round 1

inspected the CRUISE in Round 2 and vice versa.

3 Data and Analysis

3.1 Data

Three sets of data are important to our study: the fault key, the team fault summaries, and the individual fault

summaries.

12

21 32 41 421 2Sum

Key

44
43

Rev Method

Team

...
1

... ...
42 Data inconsistency 9

Incorrect functionality

Missing functionality

Scenario

0 0 0 0 0 0

0000106

18

23

AH

0

0

DT

1

0

MA

0

0

1

AH DT

0

0

AH

0

0

Figure 4: Data Collection for each WLMS inspections. This �gure shows the data collected from one
team's WLMS inspection. The �rst three rows identify the review team members, the detection methods they
used, the number of faults they found, and shows their individual fault summaries. The fourth row contains
the team fault summary. The fault summaries show a 1 (0) where the team or individual found (did not �nd)
a fault. The �fth row contains the fault key which identi�es those reviewers who were responsible for the fault
(AH for Ad Hoc only; CH for Checklist or Ad Hoc; DT for data type inconsistencies, Checklist, and Ad Hoc; IF
for incorrect functionality, Checklist and Ad Hoc; and MF for missing or ambiguous functionality, Checklist and
Ad Hoc). Meeting gain and loss rates can be calculated by comparing the individual and team fault summaries.
For instance, fault 21 is an example of meeting loss. It was found by reviewer 44 during the fault detection
activity, but the team did not report it at the collection meeting. Fault 32 is an example of meeting gain; it is
�rst discovered at the collection meeting.

The fault key encodes which reviewers are responsible for each fault. In this study, reviewer responsibilities

are de�ned by the detection techniques a reviewer uses. Ad Hoc reviewers are responsible (asked to search for)

for all faults. Checklist reviewers are responsible for a large subset of the Ad Hoc faults4. Since each Scenario is a

re�nement of several Checklist items, each Scenario reviewer5 is responsible for a distinct subset of the Checklist

faults.

The team fault summary shows whether or not a team discovered a particular fault. This data is gathered

from the fault report forms �lled out at the collection meetings and is used to assess the e�ectiveness of each

fault detection method.

The individual fault summary shows whether or not a reviewer discovered a particular fault. This data is

gathered from the fault report forms each reviewer completed during their fault detection activity. Together

with the fault key it is used to assess whether or not each detection technique improves the reviewer's ability to

identify speci�c classes of faults.

We measure the value of collection meetings by comparing the team and individual fault summaries to

determine the meeting gain and loss rates. One team's individual and team fault summaries, and the fault key

are represented in Figures 4 and Figure 5.

4i.e., faults for which an Ad Hoc reviewer is responsible.
5i.e., reviewers using Scenarios.

13

1 2Sum

Key

44
43
42

Rev Method

Team

...
25

0

2614 17
Ad Hoc

Ad Hoc

Ad Hoc

Ad Hoc 10

4

6

7 0

0

0

0

AH MF

1

0

1

1 0

0

0

1

AH

0

0

0

0

AH

1

1

0

1

AH DT

0

0

0

Figure 5: Individual and Team Fault Summaries (CRUISE). This �gure shows the data collected from
one team's CRUISE inspection. The data is identical to that of the WLMS inspections except that the CRUISE
has fewer faults { 26 versus 42 for the WLMS { and the fault key is di�erent.

Our analysis is done in two steps: (1) We compared the team fault detection rates to determine whether the

detection methods have the same e�ectiveness and (2) we analyzed the e�ectiveness of collection meetings to

further understand di�erences in each method's performance.

3.2 Analysis of Team Performance

Tables 4 shows the raw team data. Six of the cells contain the average detection rate for teams using each

detection method and speci�cation (3 detection methods applied to 2 speci�cations). Figure 6 summarizes this

data. As depicted, the Scenario detection method resulted in the highest fault detection rates, followed by

the Ad Hoc detection method, and �nally by the Checklist detection method. For the student population the

performances of the Ad Hoc and Checklist methods were statistically indistinguishable. For the professional

population the performances of the Ad Hoc method was statically superior to that of the Checklist method.

Tables 2 and 3 present a statistical analysis of the team performance data as outlined in Section 2.1.5.

The independent variables are listed from the most to the least signi�cant. For both the professionals and the

students the Detection method used is signi�cant. For the students, but not the professionals, Speci�cation is

also signi�cant. For both groups the Round, Replication, and Order are not signi�cant.

We also analyzed the combined Instrumentation and Treatment e�ects for the student performances. Since

Method was the only signi�cant independent variable for the professional subjects we did not perform this analysis

on their data. The results indicates that the interaction between Speci�cation and Method is not signi�cant.

This means that although the average detection rates varied for the two speci�cations (for the student subjects

only), the e�ect of the detection methods is not linked to these di�erences.

Based on the preceding analyses we reject the null hypothesis that the detection methods have no e�ect on

14

Professional Subjects

All Data Method Spec. Round Order

0.0

0.2

0.4

0.6

0.8

1.0

-

-

-

-

-

--

-

-

-

-

-

Ad Hoc

Check

Scen

CRUISE
WLMS

R1

R2 CW

WC

Student Subjects

All Data Method Spec. Round Order

0.0

0.2

0.4

0.6

0.8

1.0

-

-

-

-

-

-

-

-

-
-

-

-

-

--

-

-
-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

AdHoc
Check

Scen

CRUISE

WLMS

R1
R2

CW
WC

Figure 6: Fault Detection Rates by Independent Variable. The dashes in the each panel's far left column
show each team's fault detection rate for the WLMS and CRUISE. The horizontal line is the average fault
detection rate. The plot demonstrates the ability of each variable to explain variation in the fault detection
rates. For the Speci�cation variable, the vertical location of WLMS (CRUISE) is determined by averaging the
fault detection rates for all teams inspecting WLMS (CRUISE). The vertical bracket,], to the right of each
variable shows one standard error of the di�erence between two settings of the variable. The plot indicates that
for both the professional and student subjects Method is signi�cant, for the students, but not the professionals,
Speci�cation is signi�cant; and for neither group is Round, Replication, or Order signi�cant.

inspection performance.

3.3 Analysis of Collection Meetings

In this Section, we measure the bene�ts of collection meetings by comparing the team and individual fault

summaries to determine the meeting gains, meeting losses and net meeting gain/loss. (See Figure 4 and Figure 5).

A \meeting gain" occurs when a fault is found for the �rst time at the collection meeting. A \meeting loss"

occurs when a fault is �rst found during an individual's fault detection activity, but it is subsequently not recorded

during the collection meeting. Meeting gains may thus be o�set by meeting losses and the di�erence between

meeting gains and meeting losses is the net improvement due to collection meetings. Our results indicate that

collection meetings produce no net improvement for either the professional or student populations.

15

Independent SST �T SSR �R (SST =�T)(�R=SSR) Signi�cance
Variable Level

Detection Method { treatment .200 2 .359 29 8.064 < :01
Speci�cation{ instrumentation .163 1 .396 30 12.338 < :01
Inspection round { maturation .007 1 .551 30 .391 .54
Experimental run { replication .007 1 .551 30 .391 .54
Order { presentation .003 1 .003 30 .141 .71

Team composition { selection .289 15 .268 16 1.151 .39

Table 2: Analysis of Variance for Each Independent Variable (Student subjects). The analysis of
variance shows that only the choice of detection method and speci�cation signi�cantly explain variation in the
fault detection rate. Team composition is also not signi�cant.

Independent SST �T SSR �R (SST =�T)(�R=SSR) Signi�cance
Variable Level

Detection Method { treatment .095 2 .053 9 7.942 < :01
Speci�cation{ instrumentation .002 1 .147 10 .158 .70
Inspection round { maturation .011 1 .137 10 .837 .38
Order { presentation .007 1 .141 10 .510 .49

Team composition { selection .099 5 .051 6 2.37 .16

Table 3: Analysis of Variance for Each Independent Variable (Professional subjects). The analysis of
variance shows that only the choice of detection method is signi�cant.

Speci�cation Detection Method
Ad Hoc Checklist Scenario

WLMS (.19) (.29) .29 .38 .45 .48 .5 .5 (.17) (.17) .29 .33 .5 .52 (.31) .4 .55 .55 (.55) .57 .62 .74
(average) (.24) .43 (.17) .41 (.43) .57
Cruise .23 .23 .27 .27 (.27) (.27) .35 .38 .46 (.12) .19 (.19) .23 .23 .31 (.27) .35 (.38) .42 .42 .5 .54
(average) (.27) .31 (.15) .24 (.33) .45

Table 4: Team Fault Detection Rate Data. The nominal and average fault detection rates for all 24 teams.
The performances of the professional subjects are enclosed in parentheses.

3.3.1 Meeting Gains

Figure 7 displays the meeting gain rates for all inspections. Overall the meeting gain rate is 5:0% � 6:3%

(3:9% � 3:4%) for professionals (students). The meeting gain rate is 6:7% � 10:2% (4:7% � 5:3%) for WLMS

inspections and 3:2% � 7:2% (3:1% � 4:3%) for CRUISE inspections. The rates are not signi�cantly di�erent

between di�erent populations or di�erent speci�cations. It is interesting to note that these results are consistent

with an earlier industrial case study by Votta [19].

16

Professional Subjects

Inspection ID

Me
eti

ng
 G

ain
 P

er
ce

nta
ge

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

Ad Hoc
Checklist
Scenario

Student Subjects

Inspection ID

0 5 10 15 20 25 30

0.0
0.1

0.2
0.3

0.4
0.5

Figure 7: Meeting Gains for all Inspections. Each point represents the meeting gain rate for a single
inspection, i.e., the number of faults �rst identi�ed at a collection meeting divided by the total number of faults
in the speci�cation. Each rate is marked with symbol indicating the inspection method used. The vertical
line segment through each symbol indicates one standard deviation in the estimate (assuming each fault was a
Bernoulli trial). This information helps in assessing the signi�cance of any one rate. The average meeting gain
rate is 5:0%� 6:3% for the professionals. (3:9%� 3:4% for the students.)

3.3.2 Meeting Losses

The overall average meeting loss rates were 6:7% � 7:2% and 7:2% � 4:6% for the professionals and students

respectively. (See Figure 8.) The meeting loss rates for the WLMS were 8:3%� 11:2% (6:8% � 6:3%) for the

professionals (students), while the loss rates for the CRUISE were 5:1%�9:0% (7:7%�6:6%). Again there was no

statistically signi�cant di�erence between the loss rates of the di�erent populations or the di�erent speci�cations.

One cause of meeting loss might be that reviewers are talked out of the belief that something is a fault. Another

cause may be that during the meeting reviewers forget or can not reconstruct a fault found earlier.

This e�ect has not been previously reported in the literature. However, since the interval between the detection

and collection activities is usually longer in practice than it was in our experiment (one to two days in our study

versus one or two weeks in practice), this e�ect may be quite signi�cant.

3.3.3 Net Meeting Improvement

The average net meeting improvement is �1:7%�3:9% for professional inspections and �3:3%�1:4% for student

inspections. For the WLMS the net improvementwas �1:5%�8:5% (�2:0%�2:9%) for professionals and students

17

Professional Subjects

Inspection ID

Me
eti

ng
 Lo

ss
 P

er
ce

nta
ge

2 4 6 8 10 12

0.0
0.1

0.2
0.3

0.4
0.5

Ad Hoc
Checklist
Scenario

Student Subjects

Inspection ID

0 5 10 15 20 25 30

0.0
0.1

0.2
0.3

0.4
0.5

Figure 8: Meeting Loss Rate for all Inspections. Each point represents the meeting loss rate for a single
inspection. The meeting loss rate is the number of faults �rst detected by an individual reviewer divided by the
total number of faults in the speci�cation. Each rate is marked with a symbol indicating the inspection method
used. The vertical line segment through each symbol indicates one standard deviation in the estimate of the rate
(assuming each fault was a Bernoulli trial). This information helps in determining the signi�cance of any one
rate. The average team loss rate is 6:7%� 7:2% for the professionals. (7:2%� 4:6% for the students).

respectively. For the CRUISE the net improvement was �1:9%� 6:6% (4:5%� 2:8%). (Figure 9 displays the net

meeting improvement for all inspections.) We found no correlations between the loss, gain, or net improvement

rates and any of our experiment's independent variables.

4 Summary and Conclusions

This article presents the results from a replication of an experiment to compare di�erent defect detection methods

for inspecting software requirements speci�cations. One possible limitation of the original experiment was that it

used graduate students in computer science as subjects. If, during inspections, students behave very di�erently

than software professionals, then the original experiment's results will be invalid. To address this concern we

reran the experiment using software development professionals as subjects. One of our major �ndings is that,

although the performances of the student and professional populations were di�erent, all of the hypothesis tests

gave the same results. This doesn't imply that studies with professional are no longer needed, but it suggests that

student studies shouldn't automatically be discounted. This is very important because studies with professionals

18

Professional Subjects

Inspection ID

Ne
t Im

pr
ov

em
en

t (
Ga

in-
Lo

ss
) P

er
ce

nta
ge

2 4 6 8 10 12

-0
.4

-0
.2

0.0
0.2

0.4
Ad Hoc
Checklist
Scenario

Student Subjects

Inspection ID

0 5 10 15 20 25 30

-0
.4

-0
.2

0.0
0.2

0.4

Figure 9: Net Meeting Improvement for all Inspections. Each symbol indicates the net meeting improve-
ment for a single inspection. The average net meeting improvement rate is �1:7%� 3:9% for the professionals.
(�3:3%� 1:4% for the students). These rates are not signi�cantly di�erent from 0.

are much more expensive than are studies with student subjects.

In both the student and professional populations we found the following results:

1. The fault detection rate when using Scenarios was superior to that obtained with Ad Hoc or

Checklist methods { an improvement from 21% to 38% in the professional population and

from 35% to 51% in the student population.

2. The Checklist method { the industry standard, was no more e�ective than the Ad Hoc

detection method when used by either subject population.

3. On the average, collection meetings contributed nothing to fault detection e�ectiveness.

The results of this work have important implications for software practitioners. The indications are that

overall inspection performance can be improved when individual reviewers use systematic procedures to address

a small set of speci�c issues. This contrasts with the usual practice, in which reviewers have neither systematic

procedures nor clearly de�ned responsibilities.

Economical experimental designs are necessary to allow replication in other environments with di�erent

populations. For software researchers, this work demonstrates the feasibility of constructing and executing

inexpensive experiments to validate fundamental research recommendations.

19

These results also call into question the common practice of disregarding studied done with student subjects.

The far more important question is clearly when do student subjects provide an adequate model of the professional

population.

5 Future Work

The experimental data raise many interesting questions for future study.

� Very few faults are initially discovered during collection meetings. Therefore, in view of their impact on

development interval (calendar time to complete development), are these meetings worth holding?

� More than half of the faults are not addressed by the Scenarios used in this study. What other Scenarios

are necessary to achieve a broader fault coverage?

� We strongly suspect that Scenarios will have to be developed and customized to individual environments.

These experiments only evaluate the concept of Scenarios, but do not give su�cient detail to allow others to

develop their own. We are currently working to formalize the Scenario approach and to create a methodology

for developing them.

Acknowledgments

We would like to thank Victor Basili for his contributions to this work. We would also like to recognize the e�orts

of the experimental participants { an excellent job was done by all.

20

References

[1] IEEE Guide to Software Requirements Speci�cations. Soft. Eng. Tech. Comm.of the IEEE Computer Society,
1984. IEEE Std 830-1984.

[2] Mark A. Ardis. Lessons from using basic lotos. In Proceedings of the Sixteenth International Conference on
Software Engineering, pages 5{14, Sorrento, Italy, May 1994.

[3] V. R. Basili and D. M. Weiss. Evaluation of a software requirements document by analysis of change data.
In Proceedings of the Fifth International Conference on Software Engineering, pages 314{323, San Diego,
CA, March 1981.

[4] Barry W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cli�s, NJ, 1981.

[5] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. John Wiley & Sons, New York,
1978.

[6] Stephen G. Eick, Clive R. Loader, M. David Long, Scott A. Vander Wiel, and Lawrence G. Votta. Estimat-
ing software fault content before coding. In Proceedings of the 14th International Conference on Software
Engineering, pages 59{65, May 1992.

[7] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,
15(3):182{211, 1976.

[8] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical systems. IEEE Software,
11(1):21{28, January 1994.

[9] R. M. Heiberger. Computation for the Analysis of Designed Experiments. Wiley & Sons, New York, New
York, 1989.

[10] Kathryn L. Heninger. Specifying Software Requirements for Complex Systems: New Techniques and their
Application. IEEE Transactions on Software Engineering, SE-6(1):2{13, January 1980.

[11] Watts S. Humphery. Managing the Software Process. Addison-Wesley Publishing Co., 1989. Reading,
Massachusetts.

[12] IEEE Standard for software reviews and audits. Soft. Eng. Tech. Comm. of the IEEE Computer Society,
1989. IEEE Std 1028-1988.

[13] Charles M. Judd, Eliot R. Smith, and Louise H. Kidder. Research Methods in Social Relations. Holt,
Rinehart and Winston, Inc., Fort Worth, TX, sixth edition, 1991.

[14] J. Kirby. Example NRL/SCR software requirements for an automobile cruise control and monitoring system.
Technical Report TR-87-07, Wang Institute of Graduate Studies, July 1984.

[15] Dave L. Parnas and David M. Weiss. Active design reviews: principles and practices. In Proceedings of the
8th International Conference on Software Engineering, pages 215{222, Aug. 1985.

[16] Adam Porter, Lawrence G. Votta, and Victor Basili. Comparing detection methods for software requirement
inspections: A replicated experim ent. IEEE Transactions on Software Engineering, 21(6):563{575, June
1995.

[17] G. Michael Schneider, Johnny Martin, and W. T. Tsai. An experimental study of fault detection in user
requirements. ACM Transactions on Software Engineering and Methodology, 1(2):188{204, April 1992.

[18] J. vanSchouwen. The A-7 requirements model: Re-examination for real-time systems and an application
to monitoring systems. Technical Report TR-90-276, Queen's University, Kingston, Ontario, Canada, May
1990.

[19] Lawrence G. Votta. Does every inspection need a meeting? In Proceedings of ACM SIGSOFT '93 Symposium
on Foundations of Software Engineering. Association for Computing Machinery, December 1993.

[20] William G. Wood. Temporal logic case study. Technical Report CMU/SEI-89-TR-24, Software Engineering
Institute, Pittsburgh, PA, August 1989.

21

A Ad Hoc Detection

The fault taxonomy is due to the work of Schneider, et al., and Basili and Weiss.

� Omission

{ Missing Functionality: Information describing the desired internal operational behavior of the system
has been omitted from the SRS.

{ Missing Performance: Information describing the desired performance speci�cations has either been
omitted or described in a way that is unacceptable for acceptance testing.

{ Missing Interface: Information describing how the proposed system will interface and communicate
with objects outside the the scope of the system has been omitted from the SRS.

{ Missing Environment: Information describing the required hardware, software, database, or personnel
environment in which the system will run has been omitted from the SRS

� Commission

{ Ambiguous Information: An important term, phrase or sentence essential to the understanding of
system behavior has either been left unde�ned or de�ned in a way that can cause confusion and
misunderstanding.

{ Inconsistent Information: Two sentences contained in the SRS directly contradict each other or express
actions that cannot both be correct or cannot both be carried out.

{ Incorrect Fact: Some sentence contained in the SRS asserts a facts that cannot be true under the
conditions speci�ed in the SRS.

{ Wrong Section: Essential information is misplaced within the SRS

22

B Checklist Method

� General

{ Are the goals of the system de�ned?

{ Are the requirements clear and unambiguous?

{ Is a functional overview of the system provided?

{ Is an overview of the operational modes provided?

{ Have the software and hardware environments been speci�ed?

{ If assumptions that a�ect implementation have been made, are they stated?

{ Have the requirements been stated in terms of inputs, outputs, and processing for each function?

{ Are all functions, devices, constraints traced to requirements and vice versa?

{ Are the required attributes, assumptions and constraints of the system completely listed?

� Omission

{ Missing Functionality

� Are the described functions su�cient to meet the system objectives?

� Are all inputs to a function su�cient to perform the required function?

� Are undesired events considered and their required responses speci�ed?

� Are the initial and special states considered (e.g., system initiation, abnormal termination)?

{ Missing Performance

� Can the system be tested, demonstrated, analyzed, or inspected to show that it satis�es the
requirements?

� Have the data type, rate, units, accuracy, resolution, limits, range and critical values

� for all internal data items been speci�ed?

� Have the accuracy, precision, range, type, rate, units, frequency, and volume of inputs and outputs
been speci�ed for each function?

{ Missing Interface

� Are the inputs and outputs for all interfaces su�cient?

� Are the interface requirements between hardware, software, personnel, and procedures included?

{ Missing Environment

� Have the functionality of hardware or software interacting with the system been properly speci�ed?

� Commission

{ Ambiguous Information

� Are the individual requirements stated so that they are discrete, unambiguous, and testable?

� Are all mode transitions speci�ed deterministicly?

{ Inconsistent Information

� Are the requirements mutually consistent?

� Are the functional requirements consistent with the overview?

� Are the functional requirements consistent with the actual operating environment?

{ Incorrect or Extra Functionality

� Are all the described functions necessary to meet the system objectives?

� Are all inputs to a function necessary to perform the required function?

� Are the inputs and outputs for all interfaces necessary?

� Are all the outputs produced by a function used by another function or transferred across an
external interface?

{ Wrong Section

� Are all the requirements, interfaces, constraints, etc. listed in the appropriate sections.

23

C Scenarios

C.1 Data Type Consistency Scenario

1. Identify all data objects mentioned in the overview (e.g., hardware component, application variable, abbre-
viated term or function)

(a) Are all data objects mentioned in the overview listed in the external interface section?

2. For each data object appearing in the external interface section determine the following information:

� Object name:

� Class: (e.g., input port, output port, application variable, abbreviated term, function)

� Data type: (e.g., integer, time, boolean, enumeration)

� Acceptable values: Are there any constraints, ranges, limits for the values of this object

� Failure value: Does the object have a special failure value?

� Units or rates:

� Initial value:

(a) Is the object's speci�cation consistent with its description in the overview?

(b) If object represents a physical quantity, are its units properly speci�ed?

(c) If the object's value is computed, can that computation generate a non-acceptable value?

3. For each functional requirement identify all data object references:

(a) Do all data object references obey formatting conventions?

(b) Are all data objects referenced in this requirement listed in the input or output sections?

(c) Can any data object use be inconsistent with the data object's type, acceptable values, failure value,
etc.?

(d) Can any data object de�nition be inconsistent with the data object's type, acceptable values, failure
value, etc.?

C.2 Incorrect Functionality Scenario

1. For each functional requirement identify all input/output data objects:

(a) Are all values written to each output data object consistent with its intended function?

(b) Identify at least one function that uses each output data object.

2. For each functional requirement identify all speci�ed system events:

(a) Is the speci�cation of these events consistent with their intended interpretation?

3. Develop an invariant for each system mode (i.e. Under what conditions must the system exit or remain in
a given mode)?

(a) Can the system's initial conditions fail to satisfy the initial mode's invariant?

(b) Identify a sequence of events that allows the system to enter a mode without satisfying the mode's
invariant.

(c) Identify a sequence of events that allows the system to enter a mode, but never leave (deadlock).

24

C.3 Ambiguities Or Missing Functionality Scenario

1. Identify the required precision, response time, etc. for each functional requirement.

(a) Are all required precisions indicated?

2. For each requirement, identify all monitored events.

(a) Does a sequence of events exist for which multiple output values can be computed?

(b) Does a sequence of events exist for which no output value will be computed?

3. For each system mode, identify all monitored events.

(a) Does a sequence of events exist for which transitions into two or more system modes is allowed?

25

