
Testing and Risk Reduction

Testing and test planning in the Iterative Project Model (IPM)

© Nick Jenkins, 2003

Evaluating Your Project
The purpose of testing is to reduce risk.

Any project includes a fair amount of risk. The unknown factors within the
development and design of a project can derail the whole endeavour and more minor
risks can delay the project or inflate costs to unacceptable levels. The purpose of
testing is to reduce uncertainty and hence the risk in the project.

It is important to note that testing is the only tool in a project manager’s arsenal which
reduces risk. Any kind of development work introduces more risk since it introduces
more complexity and increases the potential for errors to be introduced. Planning and
design can help to limit risk but they will not reduce or eliminate the risk already
present in a project.

Through a cycle of testing and resolution a project manager can progressively
eliminate risks and errors in a project. Note however that the resolution of errors still
offer the chance of introducing more. For this reasons testing and evaluation must
always be the last phase of a project. The objective is to leave the project in a “known
good state”.

The Testing Mindset

There is particular philosophy that accompanies “good testing”.

A professional tester approaches a product with the attitude that the product has
defects and it is their job to discover them. They assume the product or system they
receive is inherently flawed and it is their job to ‘illuminate’ the flaws. This attitude is
necessary but can bring them into conflict with developers and designers.

This ‘chicken little’ approach really is necessary to testing. Designers and developers
approach software with the an optimism based on the assumption that the product is
basically working correctly and just needs to be refined to be complete. This means
that they often overlook fundamental issues or fail to recognize them when they see
them. By taking a skeptical approach the tester offers a balance in that assessment. A
project manager should draw on both sources of opinion in making his or her
decisions.

The project manager must manage the schedule and delivery but also be responsible
for the ultimate quality of the project. In the final stages where an issue is uncovered
it is often far too tempting for a project manager to simply overlook quality in favor of
the delivery deadline. Project managers who succumb to this temptation will pay the
price later.

Principles of Testing

Test Early, Test Often

There is an oft quoted truism of software engineering that states : a bug found at
design time costs ten times less to fix than one in coding and a hundred times less
than one found in implementation.

The principles embodied in this book emphasize the need to reduce the introduction
of design and coding errors through the use of good development methodology. Ever
process is flawed however and errors will unavoidably creep in despite your best
efforts. Early use of testing and evaluative procedure will help you eliminate errors
before the increasing complexity of your project makes them difficult or costly to
rectify.

A single pass of testing is never enough either. Your first past at testing simply
identifies where the issues occur. At the very least a second pass of (post-fix) testing
is required to verify that the issues have been correctly resolved. The more passes of
testing you conduct the more confident you become and the more you should see your
project metrics converge on the final state of your project.

Regression vs Retesting

From the above explanation the need for re-testing is fairly self evident. You must re-
test fixes to ensure that the issues has been resolved satisfactorily before development
can progress. By contrast the need for regression testing is not well understood,
except within enlightened circles of the software development industry.

Broadly speaking re-testing is the act of repeating a test to verify that a previously
found issue has been correctly fixed. Regression testing is the act of repeating other
tests in associated areas to ensure that the applied fix has not introduced other errors
or unexpected behavior.

For example if a plane suffers from excessive flex in the wings then the structural
members of the wing and the brackets holding it to the body of the plane may be
stiffened. This will cure the flex in the wings but it will have the unfortunate effect of
placing more load on the body of the plane, possibly with disastrous consequences.

Verification and Validation

There are two major types of tasks in testing : verification and validation.

Verification tasks are tasks designed to ensure that the product is internally consistent.
They ensure that the product meets the design which meets the specification which
meets the requirements and so on. By and large the majority of testing tasks fall into
the verification category with the final product being checked against known good
references to ensure the output is within expected tolerances.

Validation tasks are just as important but less common. Validation is the use of
external sources of reference to ensure that not just the product but the whole design
meets the expectations of users or clients. As previously discussed specifications and
requirements are all necessarily incomplete models of the final product. Basing the
ultimate success or failure of a project on these is a dangerous prospect at best and the
wise project manager will seek independent and external validation of their finished
product.

Independence

Independence in testing is an absolute requirement. In order to effectively do their job
testers must be given a degree of freedom from design and build teams. Testers have
the unenviable job of assessing and reporting the quality of a product and must have a
degree of independence to be able to do so objectively. Conversely the test team relies
upon the other teams for the entirety of its input and so must tread a fine edge
between independence and co-operation to build trust within the teams.

As a project manager however you are most concerned with the independence of your
test team and the accuracy and objectivity of their results. A good test team will take
care of the intra-team relationships for you and you can focus on maintaining their
independence so you have a clear and reliable source of information on the status of
your project.

Test Planning

The Purpose of Test Planning

Like many elements of software project management testing is a discipline in itself
and embodies a mini-project in its own right. Like all good projects testing must be
planned to ensure it delivers on its expected outcomes.

Test planning represents a special challenge however. Essentially the aim of test
planning is to decide where the bugs in a product or system will be and then to design
tests to locate them. The paradox is clear, if we knew where the bugs were then we
could fix them without having to test for them.

The naïve retort is that you simply test “all” of the product. Even the simplest
program however will defy all efforts to achieve 100% coverage. Even the term
coverage itself is misleading since this represents a plethora of possibilities.

For example do we want 100% coverage of the code ? But does 100% coverage of the
code mean “line coverage” (executing every statement in the system or product at
least once) or does it mean “branch coverage” which is more logical (executing every
logical branch and path within the code at least once). Taking branch coverage for
example we can calculate the number of paths within a simple system or unit of code
using techniques such as LCSAJ and the McCabe complexity metric. This in turn will
determine the number of separate tests we will need to conduct to achieve “100%
coverage”. Not surprisingly this number turns out to be frustratingly large for
anything but the simplest piece of code.

So perhaps we have achieved 100% coverage of the code, but what about 100%
coverage of the input and output? Exercising the code simply means you have tested
every executable statement or branch decision with a particular value of input. To test
it completely you would also need to cover all the possible input and output values
since each one could possibly provoke an error. The possible input and output space
of even the simplest of programs can run into trillions upon trillions of combinations
and while this can be reduced using techniques such as “equivalence classes” and
“boundary value analysis” the task is simply too great.

The stark reality for testing is that complete coverage of any sort is simply not
possible.

The answer is reasonably simple. We already have a key predictor of project success
and that is risk. By using risk to drive our testing we can achieve a reasonable balance
between the risks associated with a project and the commercial returns. If additional
testing will subsequently reduce our risk and increase our potential returns then the
cost of performing that testing can be weighed against the risk of failure should it not
be carried out.

At the start of testing there are a
(relatively) large number of issues
with the project and these can be
uncovered with little effort. As
testing progress the law of
diminishing returns applies and
more an more effort is required to
uncover subsequent issues. At
some point the return-on-
investment to uncover that last 1%
of issues is outweighed by the high
cost of finding them. The cost of
letting the customer or client find
them will actually be less than the
cost of finding them in testing.

The purpose of test planning therefore is to put together a plan which will deliver the
right tests, in the right order to discover as many of the issues with the product or
system as possible.

The Process of Test Planning

Given that we don’t a priori know where issue are going to
occur in the product or system we must design a test
regime which makes the most efficient effort to uncover
issues.

This is where the Iterative model comes into play again.
By using the model of “design-develop-evaluate” we can
constantly refine our testing approach to ensure it delivers
the best results.

Design

Develop Evaluate

0% 25% 50% 75% 100%

Time spent during testing

N
u

m
b

er
 o

f
is

su
es

 f
o

u
n

d

By starting with a broad based testing approach we can identify areas of likely risk
and focus our efforts on

But how to identify those areas of risk ?

It is useful to think of software as a multi-dimensional entity with many different axes
of complexity. For example one axis of complexity is the code of the program, which
will be broken down into modules and units. Another axis will be the input data and
all the possible combinations. Still a third axis might be the hardware that the system
can run on, or the other software the system will interface with or possible

Testing can then be seen as an attempt to achieve “coverage” of as many of these axes
as possible in an attempt to find issues. Remember we are no longer seeking the
impossible 100% coverage but merely an indication of where issues lie, where the
likely areas of risk are. Testing can then be focused on these areas in order to find
and eliminate the issues.

Outlining

To start the process of test planning a simple process of ‘outlining’ can be used.

Taking each of the axes of complexity, break each one down into its component parts.
This is essentialy a process of deconstructing the software into constituent parts based
on different taxonomies. For each axis simply list all of the possible combinations you
can think of.

The number and extent of your ‘axes’ will vary dependent upon your system or
product but some likely axes are presented here :

• Functionality (as per the spec) • Code structure and organization

• Internal and external interfaces • Input and output parameter space

• Physical components (manuals
etc)

• User Interface elements

• Data • Platform variables (hardware, O/S,
etc)

• Configuration elements • Error conditions

• Localisation /
Internationalisation

• End-users (differing roles,
interfaces etc)

Test Case Design

The next step in testing is to design test cases which cover or exercise each of the
points detailed on your outline. Note that a single test may in fact validate more than
one point on one axis. A test could simultaneously validate functionality, code
structure, a user interface element and error handling.

It is likely that the detail of your outlining will preclude a complete set of test cases so
your aim should be to provide a broad coverage for the majority of your outline points
and deep coverage for the most risky areas outlined. Broad coverage implies that an
element in the outline is evaluated in a cursory or elementary fashion while deep
coverage implies a number of repetitive, overlapping test cases which exercise every
conceivable variation in the element under test.

The aim of broad coverage is to identify risk areas and focus the deeper coverage of
those areas to eliminate the bulk of issues. It is a tricky balancing act between trying
to cover everything and focusing your efforts on the areas that require most attention.

Remember too that risk is defined by the likelihood of an issue arising and it’s impact
when it does arise. Therefore your testing should focus deep coverage of areas where
issues are likely to occur or where the impact will be particularly significant.
Likelihood is determined or identified by factors such as code or system complexity,
historical occurrences of issues, stress under load and reuse of code. Impact is
determined by the visibility of the issue and the importance of the implied failure to
the end-user or to the system as a whole.

Refinement

As you progress through each
Iterative cycle of design-develop-
evaluate you can further refine
your test plan. As each cycle of
testing uncovers more issues you
can shift testing to the more risky
areas of your product or system.
Typically issues are found in a
frequency demonstrated by the
curve shown at right. During the
early stages of testing not many
issues are found. As testing hits it
stride issues start coming faster
and faster until the development team gets on top of the problem and the curve begins
to flatten out again.

This is the point where your risk/reward ratio begins to flatten out and it may be that
you have reached the limits of effectiveness with this particular form of testing. If you
have more testing planned or more time available now is the time to switch the focus
of testing to a different point in your outline strategy.

0% 25% 50% 75% 100%

Time spent during testing

N
u

m
b

er
 o

f
is

su
es

 f
o

u
n

d

Cem Kaner said it best when he said “the best test cases are the ones that find bugs”.
A test case which finds no issues is not necessarily worthless but it obviously is worth
much less than a test case which does find an issue. Your efforts must focus on those
test case that find issues. The cycle of refinement should be geared towards discarding
inefficient tests and diverting attention to more fertile evaluation of the software.

Also referring each time to your original outline will help you avoid losing sight of
the wood for the trees. While finding issues is important you can never be sure where
you’ll find them so you can’t assume the issues that you are finding are the only ones
that exist. You must keep a continuous level of broad coverage testing active to give
you an overview of the product or system while you focus the deep coverage testing
on the trouble spots.

For more discussions on the benefits of iterative development methods, see my other
papers on the Iterative Project Model (IPM).

© Nick Jenkins, 2003

