
MONTHLY NEWSLETTER

Aug 2008 - Pragmatic Software Newsletters

Agile Scrum - Retrospectives

Many of us have experienced projects that drag on much longer than expected and cost more
than planned. Companies looking to improve their software development processes are now
exploring how Agile can help their Enterprise more reliably deliver software quickly, iteratively
and with a feature set that hits that mark. While Agile has different "flavors", Scrum is one
process for implementing Agile. This newsletter is one in a series of newsletters that will
discuss the Agile Scrum process and will end with variants of Scrum that can be used to aid in
improving your software releases. Here are the prior newsletters in this series:

Feb 2008: Agile Scrum - An Overview
http://www.pragmaticsw.com/newsletters/Newsletter_2008_02_SP.htm
Mar 2008: Agile Scrum - Team Composition
http://www.pragmaticsw.com/newsletters/Newsletter_2008_03_SP.htm
Apr 2008: Agile Scrum - Understanding Scrum Rules
http://www.pragmaticsw.com/newsletters/Newsletter_2008_04_SP.htm
May 2008: Agile Scrum - Scrum Kickoff and Product Backlog
http://www.pragmaticsw.com/newsletters/Newsletter_2008_05_SP.htm
Jun 2008: Agile Scrum - The 30 day Sprint and the Daily Scrum Meeting
http://www.pragmaticsw.com/newsletters/Newsletter_2008_06_SP.htm
Jul 2008: Agile Scrum - Reporting and Metrics
http://www.pragmaticsw.com/newsletters/Newsletter_2008_07_SP.htm

Overview
Few Agile sprints go exactly as planned. Many sprints encounter problems that must be
corrected and some go smoother than planned. Regardless of how successful or disastrous a
sprint is, it is important to review the sprint in detail once it is over. This allows your team to
figure out what things were done well and to document the things that need improvement. It
also aids in building a knowledge base that teams coming behind you can review to ensure they
get the most out of their upcoming projects. The key to future successful sprints is to learn from
past mistakes. The process of formally reviewing your sprint is called a Retrospective.

5 Steps for Conducting Retrospectives
Below are the steps for conducting successful Retrospectives:

1. Plan Your Retrospective - Upon completion of a sprint, the team should conduct a
Retrospective. This is where the Scrum Master invites all the major players of the team
(Product Owner, Team Members, Software Quality Engineers, etc.) to a meeting to
review the successes and failures of the sprint.

2. Require Team Participation - Ask the attendees to bring a list of 2 items that were
done well during the sprint and 2 things that could be improved upon.

3. Hold the Retrospective Meeting - Go around the table and have each person to
discuss the 4 items they brought to the meeting. Keep track of how many duplicate
items you get from each team member. At the end of the round table discussion of
items, you should have a count of the most common items that were done well and the
most agreed upon items that need improvement. Discuss the top success items and the
top items that need improvement.

4. List Items Done Well and Things Needing Improvement - Upon listing of the
success and improvement items, discuss specific things that can be done to avoid the
items that need improvement upon the next release. If some items need more
investigation, assign specific individuals to finding solutions.

5. Create a Retrospective Report - The best way to keep this information organized is to
create a "Retrospective" report, where you document your findings. Send the
Retrospective report to all team members. Before team members embark on their next
sprint, make sure they review the Retrospective report from the prior project to gain
insight from the prior project. We created a template that you can use for the document,
download it here: http://www.pragmaticsw.com/Template_Retrospective.doc .

Our Experience with Retrospectives
Agile is an iterative process and if your team makes use of Retrospectives, they will continually
improve their Agile process. We have found this to be true in our own organization, below are
the results of the first few Retrospectives we conducted:

Sprint 1 Retrospective
Our first sprint did not result in a releasable piece of software because we had too many items
that were not fully completed by the end of the sprint. When we conducted our Retrospective,
we had these recommendations of items to improve:

1. Better Requirements - We started by utilizing User Stories for analysis and found that
User Stories did not provide enough detail and caused too much re-work. So we
replaced User Stories with a more detailed requirement document called a Work Order,
here is an example: http://www.pragmaticsw.com/Template_WorkOrder.doc. We also
found that providing estimates (in number of hours) and tracking hours remaining was
more efficient, objective and reliable than using Story Points, so we changed our
measurements from Story Points to hours.

2. Test Case Development - In the first sprint, we had our software quality engineers
create test cases for each requirement, but we did not share those test cases with the
programmer. Once the code was moved to quality assurance, we found a lot of re-work
because many of the test cases failed. So we decided for the next sprint we would have
the software quality engineers define all test cases before coding began and we required
the programmer review the test cases before coding began. Upon finishing the code, the
programmer was required to run all established test cases. We found in Sprint 2 that this
simple suggestion reduced quality assurance time by 30% and improved quality.

Sprint 2 Retrospective
By implementing better requirements and by reducing our quality assurance time, our second
sprint went much better and we released the new software into Beta. However, our team
members had to work too many hours to get the sprint completed, so when we conducted our
Retrospective for Sprint 2, we had these recommendations of items to improve:

1. Better Estimates - We ran reports that showed that our estimates were about 12%
underestimated in Sprint 2. To fix this, we decided to add a 15% estimate buffer to our
next sprint and allocated team members to 7 hour days instead of 8 hour days (to
account for meetings and planning).

2. Leadership Oversight - We reduced the workload of our lead programmer to ensure
he had time to provide leadership for code inspections, code refactoring and general
team leadership.

3. Regression Automation - In Sprint 1 and 2, our regression test cases were run
manually and it took about 2.5 full days to fully regress the existing features. Due to

this, we could only afford to do full regression testing about twice during the sprint. To
resolve this, we decided to invest in an automated testing tool and to create a set of
automated regression test cases that could be run each time we did a new build of the
software (daily). You can learn more here:
http://www.pragmaticsw.com/WhitePaper_TestCase_Automation.pdf.

Summary
The Retrospectives from the two prior sprints identified critical issues that needed to be
addressed and allowed us to finish our third sprint with more functionality than was originally
planned and with higher quality than our prior sprints.

What's Next?
Upcoming newsletters will discuss the following topics:

Agile Scrum - Site specific variants of Scrum

Helpful Templates

Below are some helpful templates to aid you in developing software solutions on-
time and on-budget:

Pragmatic Agile Development -
http://www.pragmaticsw.com/PADOverview.pdf
Software Development /QA Templates -
http://www.pragmaticsw.com/Templates.asp
Software Planner - http://www.SoftwarePlanner.com
Agile Training - http://www.PragmaticSW.comServices.asp

About the Author

Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com). With over
23 years of experience, Steve has extensive knowledge in project management, software
architecture and test design. Steve publishes a monthly newsletter for companies that design
and develop software. You can read other newsletters at
http://www.PragmaticSW.com/Newsletters.asp.

