Technologies de l'Information

	« Best Test Practices for »

« Intranet Applications»

41.
Introduction

41.1.
Document scope

41.2.
References

41.3.
Glossary

51.4.
Conventions

62.
Best test practices

62.1.
Foreword

62.2.
Requirements

72.3.
Test Case Design

92.4.
Quality features

122.5.
Load testing

132.6.
Automation testing

142.7.
Reports

142.8.
User Acceptance testing

162.9.
Issue management

173.
Global Tests Results

173.1.
Introduction

173.2.
Ressources

183.3.
Statistics

193.4.
Comments

204.
Deployment

204.1.
Introduction

204.2.
By root cause

214.3.
By importance

214.4.
Comments

225.
Conclusions

225.1.
Introduction

225.2.
Improvements

CHANGES HISTORY

	Version
	Date
	Related Sections
	Description
	Author(s)

	001
	23 March 2006
	
	Document creation
	Fabiano Gaiga

	002
	12 May 2006
	
	Document reviewed
	René Maes

	003
	14 June 2006
	
	Document reviewed
	Christos Dellopoulos - Tristan Delcourt

	100
	22 Jne 2006
	
	Document delivery
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

1. Introduction

1.1. Document scope

This document is a collection of formal test practices put in place in a first attempt to validate an intranet application at the customer organization. The intranet application is named TOP and the end users belong to the department verifying incoming documents in a large workflow approach.

By test practices, we mean test practices related to black box testing only, so unit and integration testing is not discussed here.

The document is focused on an intranet application because it is one of the most popular application style that we actually see today. In our perception, an intranet application implies the following assumptions:

	Feature
	Description

	Security
	The security is set at an average; I mean the identification process is necessary but no possible connection is allowed from outside but only from different geographical locations.

	Ergonomics
	The GUI is driven by HTML screens.

	Client
	The client software running the application is Internet Explorer or at minimum the browser recommended at corporate level.

	Asynchronous mode
	The information flow respects the http protocol with forms sent to the server and reply screens sent to the client. . No information is refreshed on screen or rebuilt dynamically within the browser.

1.2. References

	Domain/File name
	Comment
	Reference

	Chartes_Site_Internet
	Charte de normalisation de la présence de l'état Luxembourgeois
	eLuxembourg Project

	Guide ergonomie sites web
	CNRS Ergonomics recommendations
	CNRS/DSI/QUAL/WEB/GUIDE ERGO

	Musée national d’histoire et d’art (Luxembourg)
	Web sites related to the cultural department
	www.mnha.lu

	PE_Guide_Ergonomique
	Internal ergonomics recommendations
	

	UML
	This is a very useful web site explaining in details the rules and semantic of all UML diagrams.
	http://www.agilemodeling.com/style/

	Security
	Site more related to Internet applications but can be interesting to understand specific techniques or threats.
	www.cert.org

	Automation
	Product presentation, user guides.
	www.Fitnesse.org

	Test forum
	Very good forum (a bit slow), splitted by test domains.
	www.qaforums.com/cgi-bin/forums/ultimatebb.cgi

	Test tool
	Best pairs
	www.satisfice.com/tools.shtml

	Test tool
	Orthogonal matrix
	www.stsc.hill.af.mil/consulting/sw_testing/improvement/cst.html

1.3. Glossary

	Term
	Description

	LDAP
	Lightweight Directory Access Protocol. Service giving access to directories content. This service was used to manage the members of the customer directory

	TO
	Tabling Office. This is the customer. The tabling office is responsible to verify law proposal documents before sending them to translation services. Documents are validated from a linguistic and juridical point of view.

	TOP
	Tabling Office Portal. This is the application name. As the names suggests, the first idea was to implement a portal, or a central point of information, for the TO, later and with better definition of the requirements, the portal became an interactive application.

	Static test
	Is a form of software testing where the actual software isn't used. Instead methods like code review, inspection and walk-through are used.

	IE
	Internet Explorer

	URL
	Unified resource Locator

	Test campaign
	The execution phase of Testing. A test campaign includes all the test cases designed for a specified version of the application.

1.4. Conventions

	Icon conventions

	[image: image1.png]

	Important information.

	[image: image2.png]

	General information

2. Best test practices

2.1. Foreword

This is one of the first formal test approach introduced and implemented at the customer organization, in the department of information distribution.

This first experimental approach was put in place to improve specific aspects that were causing recurrent problems in different projects of this department:

· Applications refused at User acceptance level: This is the worst scenario for the IT department in any organization.

· Poor application quality: For live applications, the general feeling from end users, is that the applications are not user friendly, difficult to use, and bugs are frequent. We will not go into details here but we can give many examples. Reading 2.4 , will make you understand what we mean.

· Too much effort dedicated to support: This is a consequence of the second point, if the applications are not reaching sufficient quality level, one can expect a strong negative feedback from end users and a lot of time spent on solving related issues.

Different aspects of testing will be addressed in next chapters and they will be described in chronological order as you would expect of any IT project: from inception to deployment.

However, when work was started on the project, inception deliverables were already produced and the coding phase was underway with first iteration almost completed. Due to this context and to limited technology background, there was no white box testing or unit testing foreseen in the Test plan.

2.2. Requirements

2.2.1. Approach

For those deliverables, a static test approach was completed. In this type of approach, one needs a good understanding of the different artefacts during this phase. For instance in this project, it was necessary to have a good understanding of the UML deliverables.

A fair comprehension is needed to be able to:

· Validate the consistency across different documents

· Remove black holes in the analysis

· Point out ambiguous requirements

The three points above are crucial as this is where you can, at this early stage of the project, reduce communication errors between users, analysts, and developers.

The last but not least important aspect of static testing is to check if requirements are testable. Which means that you should always ask yourself “How will I test this requirement?”. For example, in the TOP project, it was requested to have an error management in case of issues coming from external applications; as we were not able to control the output of those applications, especially in the Test environment, this was a major risk because no tests were actually feasible.

Static testing is a good start to identify Tests scenarios and high level definition of tests cases.

2.2.2. Limitations

According to the technology used by Intranet applications, specific requirements might be impossible to put in place and static test should help to highlight potential issues. This always depends on weight of requirement and cost of development but several examples of requirements are more meaningful:

· Possibility to select multiple items across multiple pages: This is not easy to implement due to the single “form” approach and web container structure of an Intranet application.

· In case of multiple forms entry, the information should be passed through the various forms in the various steps of the data entry process. Again, this is not easy to implement due to the single “form” approach. Hidden fields or session cookies are usually used for this purpose.
We don’t say this is impossible to implement but those requirements have their costs and it is our duty to raise the flag.
2.3. Test Case Design

2.3.1. Introduction

Based on the requirements deliverables, we will explain how to use them and how to approach them to get the most added value in the Test case definition process.

The purpose of this chapter is not to detail every possible design techniques but to highlight the most interesting ones applied to this project.

2.3.2. General approach

Today, UML is the leading format of deliverables and it is very important to clearly understand the subtleties of those documents. We will review the main UML deliverables and how to use them for a Test design approach.

	Deliverable
	Test case approach

	Use case diagram
	Poor added value for Test case design. It is just a table of content of the application and it helps only to prepare the list of the main Test scenarios. The actors triggering the use cases should have a clear definition and must be supported by the application in terms of rights definition

	Use case description
	By use case description, we mean the text document, and also optional related documents, such as business rules and screen layouts with data description.

The level of description of a use case can vary widely because one can use this tool to describe a business process or a class method.

Even if we exclude low level use case descriptions, a use case description is a set of steps describing the interaction between an actor and the system to be built. A step in the use case description is either a step in a test case or an expected result, depending if the step is executed by the actor or by the system.

Sometimes the use case description includes an activity diagram. If the activity diagram is not included, We strongly recommend drawing one because this will help to identify all possible paths of the use case. This also constitutes a good check on the use case description itself because it will help identify missing alternative paths.

Business rules: For each business rule defined in the use case description, the rule should be checked either as an expected result or as a pre-condition of a test case.

Screen layout: This document is used as a part of the general validations of a test scenario.

	Activity diagram
	Depending at which level they are provided, activity diagrams can be used to describe:

· A use case: This has already been discussed in the previous topic.

· Screen navigation: Used to describe the possible navigation paths in the application. This is helpful to identify in an exhaustive way, for each screen, what are the navigation options.

· Process: In this context, we mean the description of business activities that the application will support. This will help build acceptance scenarios. This topic will be discussed in chapter ‎2.8.

	State diagram
	This kind of diagram is used as a cross-check versus test scenarios; each transition without guards is translated into a Test scenario, and a transition including a guard is translated into a Test case of a Test scenario. The progression of states may help to build the acceptance scenarios; see chapter ‎2.8.

	Sequence diagram
	Here, like the activity diagram, it will depend at which level they are provided. To make a long story short, the sequence diagrams describing object methods can be dropped as we are not addressing white box testing.

In some cases, they are useful because they represents:

· Interactions between different systems; used in work-flow or applications integration context. This will help describe, either the expected results, or the pre-conditions triggering events in test cases.

· Interactions between actors: Actors seen here more as human actors and used to describe business activities. This kind of diagram is then used in acceptance scenarios; see chapter ‎2.8.

2.3.3. Concurrent access

As the number of users could reach 150, it was more than recommended to test concurrent access. To prepare our test cases, we decide to build a matrix.

First, we had to identify, on the first axis, the major entities or business objects controlled by the application. On the second axis, we had to list all end-user functionalities provided by the application. On each intersection point, we indicated the type of access (Read, Write). Qualified test cases for concurrent access where combinations of two functionalities with Write access on the same business object.

The very first solutions proposed by Development to manage concurrent access were rejected: Development tried to use the default behaviours proposed by Oracle (pessimistic and optimistic mode) but a home-made had to be set-up to satisfy the following behaviour:

· A resource is never locked by anybody,

· If a business object changed between the display of information and the action performed by the end-user, the end-user is warned that somebody else changed the data and he is able either to retrieve the latest information or to overwrite it with his own set of data.

· If a business object has been deleted between the display of information and the action performed by the end-user, the end-user is warned that somebody else deleted the business object and he can’t perform anything more.

Try to run your concurrent test cases on different physical PC’s, this will respect real situations of concurrent accesses.

Another situation, maybe uncommon but feasible, is the same user on the same PC and with multiple IE opened; this situation is also worth testing!

2.4. Quality features

2.4.1. Introduction

Based on the ISO/IEC 9126, we focused our test effort on those quality features

[image: image3.png]

 You should always have in mind this rule will follow you thru the whole test lifecycle:

You should always check that a functionality satisfies what it was requested for but also that the functionality does not do what it was not requested to do.

Example: A requirement states that an email warning should be sent if a task is not completed before the deadline. Based on that requirement, you should check that the email warning is sent when needed but also that no warnings are sent in case of completed, closed, or refused task.

2.4.2. Reliability

There are several means to easily put an Intranet application under stress;

· Use Back and Forward keys to see how the application supports them. Even if you hide those keys within IE, it is always possible to reactivate them and is something rather easy to enable even for an end-user.

· Proper error management should be put in place to avoid obscure error messages for end-users such as HTTP 500, 401, 403 …. These must be trapped and translated into a meaningful end user message to avoid useless questions.

· Avoid the usual or regular context: Try to activate buttons without selecting anything or for example try to activate the “Update” button without updating anything. This can be very important because in our case, we had a requirement asking to send an email to all participants in the verification process in case of update.

· If the application is using cache information, try to build test cases that interact with the cache content and could create potential issues.

2.4.3. Security

Check if you can bypass the identification process by experimenting with the following points:

· Open multiple sessions of the browser by using Ctrl-N (Open in new window); this short-cut creates a new browser window but shares the session file creates by the first browser window. If the application must support a time limited connection, it is interesting to test it against “new browser windows”. If you have any doubt on your session file validity, flush the browser cache (Ctrl-F5 in IE).

· On the opposite, if you double-click on the browser icon, you should be requested with an identification process because you have an independent session file.

· Try to open the application by pasting an url to your favourite application web page. Your application should return an error message stating that the page is not more valid.

· As we are dealing with an Intranet application, normally you are not requested to test the application against attacks. However, it is maybe interesting to know about several techniques such as the SQL Injection. It is a technique where you try to input SQL statements thru alphanumeric fields. Example of a search field: '%JOHN';DELETE * FROM'
[image: image4.png]

 It has been proved that in many cases hackers are also insiders.
· In case of modal window, try to activate hyperlink, icons within this modal window to see if you are not able to open a new IE window without authentication.

2.4.4. Accuracy
Here are some tricks that we found very useful and raised an important number of issues in the application:

· In the fields, especially the alphanumeric one, try to insert spaces at the beginning, in the middle and at the end. For the beginning and the end, the application should trim the spaces except if stated clearly in the requirements. The spaces in the middle should be kept.

· Also in the alphanumeric fields, check if the following characters are well stored: the quote (Alt-039), the percentage (Alt-037), the underscore (Alt-095), the double quote (Alt-034) and the backslash (Alt-092).
[image: image5.png]

 The percentage and the underscore should be checked as well against search fields where you can get weird results; indeed the underscore and the percentage are joker characters for an Oracle database. So if you are not dealing with an Oracle database, try to get the joker characters for your specific database.

· Always validate the correct dependency between fields on the same form if business rules are set up; also try to change repeatedly the interdependencies on the screen to check if the rules are reapplied. Indeed, sometimes the rules are correctly set up when you enter the form the first time but after several changes, it can become inconsistent.
· Check that when you modify a field, the field remains modified even if other options (buttons, icons,..) are activated on the same form except if specific rules need to be applied.

· Where you are dealing with list of items, try to get empty lists and check how your application reacts to this unusual situation.

· Try to use the application for what it is not intended to do: I don’t mean to cheat via the code but only with the options provided on screen. Examples: Try to search without any search criteria; confirm an update action without any updated fields, try to enter a date only when a date/time is requested

2.4.5. User-friendliness

Even for an intranet it is possible to apply several rules applied to internet web sites:

· Respect the standards in the organization if any.

· Always know where the user is: This topic is valid for all the screens but was extended to the application itself because it was necessary to add information regarding the current version under test, and the environment where the test was executed.

· Be consistent in style, colours, fonts, icons (use CSS style sheets)

· Be consistent with labels: A field should always have the same label in all forms, emails, reports. It should always be translated the same way (if needed). It should always appear on the same position on each form: I know this is not literally possible but I mean always with the same group of information logically interrelated. (NDT: by extension a field should have the same name as the field in the database.... more easy for debug).

· Window and pop-up behaviour: Even if other windows are appearing during the application execution, it should always be impossible to open new application connections thru those pop-up windows because, otherwise, the number of Internet Explorer sessions would explode. It is also necessary to validate that it is impossible to open at the same time, the same pop-up window multiple times. Those recommendations are made to avoid user confusion with multiple windows.

· For the different interfaces, use the business words and the words used by the actors identified in the analysis. Indeed, the same concept is called differently by different actors in the same organization and even in the same department.

· No horizontal and vertical scrolling at the same time to avoid excessive use of the mouse.

· No more than 10% of screen height for vertical scrolling for the same reason as the previous point. This means in our case, a maximum of 10 items per page.

· Screen resolution of 1280 X 800 to maximize the area available for information and again to optimize the use of the mouse.

· When options are proposed to the user, always start on the left with the less used option to end on the right with the most used.

· Use navigation keys when list of items are displayed; provide sort and search facilities to help filter the information. Also provide information on how many items were retrieved and which items the current navigation is showing.

· No animation

· Limit the number of options available per page (maximum 7) to avoid confusion on screen and avoid manipulation errors by the user.

· Integrated with the office environment: Ability to cut & paste information from and to the application. Try to cut & paste a word document or to cut & paste a figure from Excel or a reference from Outlook ([image: image6.png]

 this should be true for any Office application and not just MS ones).

· Limit the number of clicks to access the information (maximum of 3)

· Display always the latest data status: As we are in a multi-user environment and as we are using a web-application that displays pages which can become obsolete, provide a refresh option (see ‎5.2.4 for more details).

· If space is lacking on the screen, it may be possible to use the IE F11 key to increase the screen region.

2.5. Load testing

2.5.1. Introduction

Load and performance testing was needed to qualify the application for the production environment deployment. The requirements needed by the production environment were the following:

	Domain
	Limitation

	CPU used
	Maximum of 20 % with peaks of 30% allowed during 10 sec

	Memory
	Depends on the server memory amount but 256 mg seems reasonable; if extra memory is needed, this generally means that there is a performance issue.

	Threads
	A maximum of one thread per concurrent user is allowed.

	Static page response time
	Maximum 2 sec.

	Dynamic page response time
	Maximum 10 sec.

	External file (pdf, doc,…) response time
	Maximum 5 sec

2.5.2. Design

An analysis phase was required to identify the major functions that would require the most from system resources such as CPU, disk access, database access. The analysis was based on the frequency and the amount of data manipulated by a function.

For each test case used, use a different set of data; this will avoid non requested caching effects.

Before starting the execution, always flush the memory before starting the load testing phase.

2.5.3. Conclusions

Those are the final results that were able to qualify the application in production. We needed three rounds to do it. See conclusions for more details.

	Domain
	Actual result

	Average response time
	< 5 sec

	CPU used
	< 30 %

	Memory
	< 230 M

Those are the main adjustments put in place to satisfy the requirements:

	Issue
	Solution

	Performance issue (CPU > 30 % and Memory <= 350 M): Avoid preparing additional information in advance. In our case, for each item in a list, a PDF work file was prepared when needed.
	The PDF file is now prepared when the link is activated, so only at user request.

	Performance issue to display list of results
	The queries were revisited to produce directly a list of results from a single query instead of individual queries producing the list. There was no need to redesign the database or to de-normalize the database.

	Global performance issue
	Frequently accessed information was loaded in cache memory

2.6. Automation testing

2.6.1. Introduction

There was a requirement to use open-source software and according various recommendations, we decided to install the Fitness automation tool. .

This software is supposed to support user acceptance testing because on one hand, you’ve got a User defining his own set of test cases with let’s say Microsoft Excel and on the other hand, you need to support those test cases by customizing basic methods. To customize the methods, strong java development skills are required.

	Domains covered
	Description

	Smoke Test
	A basic set of tests is used to qualify the new application version for testing. The set mainly covers:

· Check the connection/disconnection

· Check all the actions possible on each screen (activation of buttons, hyperlinks, icons)

· Check the navigation for each menu option

	Regression test
	The set of previous test cases manually run and representing the previous iterations of the application; not all manual test cases were translated to the regression set; see domains not covered.

It does covers all aspects that were very annoying to test manually because , depending on the architecture put in place, basic principles of OO such as re-usability are not always well supported. This means, for example, that all field dates should be checked for their format on each page.

	Domains not covered
	Description

	Concurrent access test
	This is due to a Fitness limitation; it is not possible to run two threads at the same time. With Fitness, you can build test suites or a set of test cases but those are run successively.

2.6.2. Observations

Regression testing implies the most effort in automation because:

· It needs to include the latest functionalities previously tested manually

· Revision is needed in case of new functionalities impacting the running set of test cases.

2.7. Reports

2.7.1. Introduction

We didn’t think it to be to difficult to test reports but basically we had two kinds of reports in the application:

1. General information: This kind of report doesn't make any calculation and just list information or a group of information. The report in this case is just another output mode to information that is already displayed on the screen. The controls to be done are rather limited because, as said above, it must be a "printed" confirmation of visual information.

2. Statistics: Here, we have two big families of validations to apply: data extracted based on criteria and calculation resulting from the extraction.

2.7.2. Approach

In our application, a statistic report is made up of three components:

1. A filter screen including almost 10 different criteria.

2. A list of detailed items based on the filter.

3. A summary or a list of total fields based on the details.

The first component was already a difficult matter because some criteria were list of predefined values and some criteria were exclusive with other ones. To test each criterion individually was not an issue if you know your data set repository but the main issue was to prepare a set of meaningful filters based on combinations of criteria with imbedded rules.

There are two mathematic approaches to solve this type of issue:

1. Best pairs: Method that helps you create test cases that pair each value of each of variables with each value of each other variable at least once. One needs to identify all meaningful values for each criterion and put them in a flat file. A small utility will read those values and create sensible test combinations. See point ‎1.4 for more details.

2. Orthogonal matrix: Almost same approach but with a different tool (Excel spreadsheet). The idea here is to create a minimum set of test cases based on multiple combinations of parameters.

To validate the second and the third component, you need rather strong SQL skills to simulate the extraction and the calculation by your own means.

2.8. User Acceptance testing

2.8.1. Introduction

The scope of user acceptance testing is to assess the application quality by end-users thru Business scenarios. If the quality is acceptable; this is done by evaluating the defined quality requirements against the application, the application received the sign-off for deployment.

In this case, our role was to prepare and design the business scenarios for end-users; those scenarios were afterwards validated by the same end-users before actual execution.

2.8.2. Approach

Here under are the techniques that we had to put in place to satisfy this important step because it was the first real confrontation with the end-users.

· End to end scenarios: Generally speaking, an application represents a business process or a portion of it and it is included in global picture where you have inward and outward data flows.
An acceptance scenario should always starts from an initial business trigger that can be digital or manual.
From that trigger, the story goes on and ends with a final business trigger again either digital or manual.
To help defining the business scenarios, it is interesting to write a high level Use case with main and alternate flows supported by an activity diagram. See ‎2.3.2 for more details.

· Data set preparation: To support the scenarios, data should be prepared. For each scenario, a different data set should be defined and should be used in the acceptance scenario description.

· User rights: Define clearly who does what and how the actors involved in the user acceptance process are defined in the system: which user rights are granted to whom. Always use the roles defined in your application to play your acceptance scenarios.
· Right Actors: identify the right actors needed to play the different scenarios and verify that people participating are aware of the real job. Sometimes an actor replaces somebody not invited or not identified because he is supposed to know the job; this approach can cost you a big disappointment when the final evaluation of the acceptance is provided.

2.8.3. Observations

· Don’t forget that when a new functionality is implemented, the set of existing business scenarios is supposed to be revisited to check if there is an impact.

· The set of business scenarios is also used by the Test team to validate a new iteration of the application because the regression test set doesn’t have the business view and there is a need of extra skills to validate the application from and end-user point of view.

· Always invite the right actors when doing your acceptance testing with the end-users: try to make them play their real role even if they are representing a group of users.

· Lesson learned: We made a big mistake during a user Acceptance workshop: we didn’t identify correctly a type of actor and this type was included in another one that looked almost the same. That mistake cost us a lot because we had to rebuild part of the application to support this new actor.

2.9. Issue management

2.9.1. Introduction

There is no good communication between Test and Development without an Issue reporting tool. Again, we found JIRA in the library of open source tools. An official enterprise licence was then bought. This tool is now used at department level.

JIRA is used in conjunction with Outlook and is supported by an Oracle database. Users are defined and belong to groups defining a set of rights. Forms and work-flows can be adapted.

2.9.2. Work-flow

This is the typical work-flow followed for a bug discovered in the application:

1. The bug discoverer (generally a testing member or a developer) inputs the bug details. The bug is assigned to the development leader.

2. The development leader assigns the bug to a developer.

3. The developer fixed the issue. The issue will be included in a delivery note.

4. When there is a new delivery, one of the activities of the testing team is to browse the delivery note. Each issue fixed is then checked. According to the test results, either the issue is definitely closed or it is reopened.

Remark: The end-users are not using the bug tracking application because it is too complex. The support input the issues for them.

2.9.3. Extensions

JIRA is not only used to input bugs but also for different types of issues:

	Issue type
	Description

	Improvement
	Development needed to fully support the business

	Personal Activities
	Activities related to a personal role within the project.

	User support
	Issues in production that need a follow-up of activities to solve them.

3. Global Tests Results

3.1. Introduction

Those results represent only bugs found during the various versions before the first deployment in production; improvements are not taken into account. The application started from version 0.1.0 and finished at version 0.4.1 before going into production; this means in duration tests covering the period from the 6/12/2004 to 25/01/2006.

A total of 543 bugs were discovered. Improvements are not included; some could have been part of the statistics because they cover user-friendliness or functionality qualities but it was too difficult to sort them out.

The test basis is including the following components:

	Component
	Description

	Administration
	· Management of user rights and group of users

· Management of system parameters

	Staff administration
	· Management of members information detail

· Management of group membership

	Reception
	Management of new requests

Distribution of new requests

Management of on-going requests

	Verification
	Acceptance/refusal of verification tasks

Completion of verification tasks

Take over of verification tasks

	Reporting
	Statistics on requests

	Integration
	Data sent to mail servers

Available views on external databases

Work-flow circuits

LDAP service

3.2. Ressources

	Role
	Mission
	Number of days

	Test manager (full time)
	· Test strategy and test planning

· Set up the communication tools

· Design the test scenarios and test cases

· Execution of the test cases and bug reporting

· Reporting to the project leader

· Design of test cases based on test scenarios

· Execution of the test cases and bug reporting
	220

	1 Tester (1/10 of the time)
	· Design of test cases based on test scenarios

· Execution of the test cases and bug reporting
	24

	1 Automation Tester
	· Set up and customization of automation tools

· Build automated Test suite for smoke Test

· Build automated Test suite for regression Test

· Control execution of automated Test suite and bug reporting
	140

	Total
	
	384 days

	Ratio bug/day
	543 bugs / 384 days
	1.41

3.3. Statistics

[image: image7.emf]Criticity distribution

0

50

100

150

200

250

Blocker Critical Major Minor Trivial

Criticity

Bugs

Reminder

	Criticity
	Description

	Trivial
	Error affecting the layout but not affecting the data accuracy of the application.

	Minor
	Error that doesn't affect the data accuracy but prevents from using the application in a normal way. However a workaround is possible to solve the issue.

	Major
	Error affecting:

· the data accuracy delivered by the application

· the execution of a secondary application function

	Critical
	Error affecting the execution of a strategic application function.

	Blocker
	Error affecting the normal flow of the testing process activities.

[image: image8.emf]Time distribution

0

50

100

150

200

250

From

6/12/2004

1st Qtr 2005 2nd Qtr 2005 3rd Qtr 2005 4th Qtr 2005 Till 25/01/2006

Time

Bugs

3.4. Comments

· At the second delivery in test environment, we had to stop the testing process because we had multiple blocking errors. At that moment, we decided to formalize the smoke test.

· The majority of bugs discovered occurred during the second quarter of 2005 because this coincided with major functions delivery.

· Developers were more cautious on what they were delivering because they understood the value of testing; this situation has still to improve, please see the conclusions.

4. Deployment

4.1. Introduction

After a month and a half of deployment in production, we can already draw conclusions based on the support calls received during this period. The period starts from the 13th of February 2006 till the 31st March 2006. The total of issues reported during this period is 44.

4.2. By root cause

[image: image9.emf]Root cause analysis

18

3

7

7

5

3

1

Integration issue

Lack of Analysis

Lack of TO Info

Improvement

Security issue

Bug

Configuration

	Root cause
	Number
	Description

	Integration issue
	18
	Issue related to production environment and external applications communicating with the TOP application.

	Lack of Analysis
	3
	Point missed by the analysis team during inception.

	Lack of TO info
	7
	Information not provided by key users team.

	Improvement
	7
	Functionality to be added to help user’s work.

	Security issue
	5
	Issue related to the access and rights of the application.

	Bug
	3
	A default in the application not detected by the Test process.

	Configuration
	1
	Issue related to the configuration of user’s platform

4.3. By importance

[image: image10.emf]Root cause split by importance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Integration issue

Lack of Analysis

Lack of TO info

Improvement

Security issue

Bug

Configuration

Root causes

Importance

Trivial

Minor

Major

Critical

	Value
	Definition

	Critical
	Issue preventing the normal system operation

	Major
	Issue affecting the information correctness or preventing the execution of secondary level functionalities.

	Minor
	Issue affecting the normal working procedure but a workaround is available.

	Trivial
	Issue affecting the information or screen layout.

4.4. Comments

· The most important number of issues came from the integration: part of them will be removed by providing a better protection on external events.

· It was very difficult to simulate the input of external applications because we had no control on those applications (see ‎2.2). We had a very big surprise in production: between our application and another one, there is a queue of messages to communicate; when we started in production, we had to process a big bunch of messages of that queue to be up to date. The surprise came from the fact that messages were sent to our application in LIFO mode instead of FIFO, so we were building information in the opposite order. This point will be address in a next version by creating a stub or a simulator of external applications. (NDT: exacty what needed to be done in the first place...)

· The three bugs were all related to the same item; a test case did exist but did not discover these bugs due to inaccurate data definition.

5. Conclusions

5.1. Introduction

After the first experience of testing within this customer organization, we can now emphasize on improvements that are either already in place or under sound observation.

According to the experience of this project, if those issues had not been managed or carefully followed, the application would have encountered more severe failures.

5.2. Improvements

5.2.1. Team

The team was organized with following roles:

· 1 Project Leader

· 1 Functional Analyst

· 2 Developers

· 1 Test leader

At the beginning of the project and according to the habits in place at the customer, a Team dedicated to Testing was something new to the department. After several rounds of delivery/test/bug reporting, the role of Testing was understood by this department as a necessity and a risk protection.

However, Development is still considering Testing as a watchdog and not as a quality assurance; this means that the development doesn't try to build quality proactively in its own stage and he is expecting reactive controls . Changing this attitude is the next challenge for Testing.

Implementation of better quality at design and development level is a company challenge and should receive high sponsorship, as well from IT as from the Business. Projects will be shorter, cost less, and be more close to Business requirements, with more easy acceptance from end-users, if the duality and complementarity of Development/Testing is understood and accepted by all. Testing is not a watch dog, it is there to help development respect business requirements and insure overall quality. And by this improve the image of IT toward the Business.

5.2.2. Unit test

According to the analysis of bug reports results, introducing quality at the lowest level is the next challenge to reduce the number of bugs discovered during the test campaigns. As a starter, the testing team produced a document explaining several techniques for the implementation of Unit testing.

As this document remained mainly “abstract” and not directly related to the development tools used, the document was not used. The development team was anxious not to loose time by using those techniques even if it was several times explained that the time needed to implement unit testing should be gained by less bug fixing time.

The solution set in place to improve the situation is the hiring of a unit tester well aware of the development techniques. The improvements expected won’t come immediately because it is difficult to re-factor was has already been produced but the main challenge will come with the next release when it will be possible to include quality directly in the code.

5.2.3. Acceptance test

At the end of acceptance testing phase, we encountered one major failure. The acceptance phase was built on three steps that had all to be accepted:

1. Set of Acceptance scenarios: We had played a set of the most representative business scenarios with a reduced set of actors.

2. Week of training: The 150 final users were trained. The workshops approach was taken ; in order to given them the ability to have real hands-on on the application according to pre-defined scenarios. During the workshops, a feedback was collected.

3. Play in pre-production environment: This was the last step before going live. During this phase, the acceptance process was halted. Mainly for the following reasons:
a) The application was not able to support all the actors in the process.
b) The application was a bit too complex to use; this was already a feedback received during the workshops but the process was not halted at that time.
c) Not all the cases were totally supported by the application.

So the temporary conclusion was that if the application was not buggy it was nevertheless not supporting the business entirely as expected. Decision was taken to delay deployment in production.

To be able to deliver, we had to adjust the application content in the following manner :

1. Reduce the scope of the application by eliminating functionalities not fully supporting the business. Those features will have to be revisited later with a more in depth analysis. Clearly, the analysis and the end-users missed the point here.

2. Invite the missing actors to re-factor the application remainder and support their business. Aging, the analysis missed the point by overlooking some actors.

3. Improve the user interface to reduce confusion by revisiting the labels and improve usability by reducing options and choices.

After those corrections and adjustments, we were definitely on the right track and ready for the second and final acceptance step.

5.2.4. Application

Those are improvements that we had to implement and that were urgently requested because the acceptance of the application was in danger.

	Issue description
	Solution
	Moment of involvement

	Reduce the time lag between the information on screen and the current situation in the database. Due to the Intranet technology, there can be a big difference between the two situations
	· A refresh option has been added in all the screens where the information was suppose to evolve.

· A time limit of 30 minutes has been defined after the connection; every attempt after this limit triggers a reconnection process.

	During the second acceptance phase

	Emails provided by the application were bypassed by specific actors.
	Improve the readability of the content; more space between the lines, alignment, use of the application colours.
	Early in production

As we can see, the user friendliness of an application can become easily a point of failure. We need to view the application that we are building as a trade-off between the use of an application by end-users and the added value that is brought to them. If the application doesn’t help me in my daily work why do I have to bother using it?

We need to understand that nowadays, end-users have different possibilities or tools to achieve their business and we need to prove that the solution we are building is better than their previous one. We are not anymore in those times, were the solution we were providing was the only one and so the best one.

--- Fin du document --[image: image11.png]

[image: image12.png]

	Nom du document
	IntranetApplicationsBestTestPractices_V100.doc

	Version
	100

	Status du document
	Reviewed

	Auteur
	fgaiga

	Date de création
	28/03/2006

	Nombre de pages
	24

Best Test Practices for - Intranet Applications
Page 2418
 /
fgaiga
IntranetApplicationsBestTestPractices_V100.doc

