
The Myth of Agile

My first 15+ years of software development experience has all followed some
process-driven methodology. Many projects I’d involved have several hundred

members (system engineers, developers, testers, deployment personnel). While
my first experience in Agile process was about 10 years ago, when one of my
teams (~15 developers) was working on a brand new software project. At the

time we didn’t know the term Agile; we just called it rapid development
methodology (it sounds great, right?). It was a mix of success, we did deliver

something quicker, but we also have had our own fair share of problems. Now,

with 20+ years of experience and a few more “Agile” ones, I will share my own
humble view of whether to adopt Agile, CMM, other methodologies, or a mix of

them for your project.

You probably have read some articles or books about Agile process. As such, I
don’t intend to be an expert to repeat all the benefits and how to go about Agile,

rather I will more focus on sharing with you when and how to take advantage of

what Agile has to offer, and how to complement Agile with other methodologies
so your project has a better chance to be successful. My discussion won’t be an

academic one rather a practical one, because after all your success is measured

by whether you deliver your software applications on time, within budget and

with quality.

I don’t think Agile is the panacea of every software development project. I would

like to start with the myth of Agile as highlighted in the table below:

Is Is Not

Deliver a system in many incremental A quick and loose process

Customer realized partial benefits
sooner.

Better return on investment (may be)*

Requires no requirement process
(documentation, review, approval, etc.)

Opportunities to identify and correct

problems earlier in the process

Requires no design process

(documentation, review, approval, etc.)

Best for small projects (single team

delivery a project in a few iterations)
and internal projects

Requires less unit test or no QA

process

Best for projects with team members

are co-located.

Requires no change management,

source code and version control for
development artifacts

 Requires no trace-ability & audit-ability

Potential traps and things to consider:

• Depending on the complexity of an application, the deployment of each

incremental release may require conversion tools to be developed and

tested, or manual conversion may be required. Regardless whichever, this

takes extra effort and may cause unexpected system down time. An

obvious example is that the database schema of the new and old releases

is incompatible.

• Additional time has to be allocated for “putting out fire” while developers

are working on the next release, and in the same time, the current one is

cut to service. This is more the case if the team were under extreme

pressure to deliver the current production release. Haste-makes-waste

rule do apply.

• It’s human nature that under the Agile process (shorter time intervals),

people have tendency to take shortcuts such as not documenting and

keeping records. Even the project is successful, it may be difficult if not

impossible to maintain. It is even more detrimental if some developers

(living documents) leave the project while development is still under way.

• Because of too much emphasis on “speed,” often documents are out of

date, or, worse, non-existing, and source codes are uncommented. What

if people leave the team or quit the job? This is even more critical if you

have offshore teams or outsourced development.

• Human factors are as important. People will be burned out or less

effective if a project has too many iterations.

• A project is not a brand new one rather an enhancement or a

maintenance of an existing system. What if there are not enough

knowledgeable members left over, or not enough up-to-date

documentation.

• You may want to consider the practice, in which high-level concepts and

requirements are kept in documents while low-level details are explained

in source code comments. This way, the documents won’t get out of date

quickly, and developers don’t have to go to multiple places to keep things

up to date.

• Consider Agile, if you can break a project into many easy-to-manage

intermediate deliverables to take advantages of the benefits Agile offers

such as iterative fine tuning, earlier usage of implemented functions

(maximizing ROI). Still, I feel it will be more effective if certain best

practices are followed to provide necessary check and balance, and

further to avoid the traps mentioned above. If a project is too complex,

you may want to consider something like waterfall model for a complete

project plan before breaking it down to iterations. Without a “whole”

picture, the likelihood of re-architect your software at the iteration level is

high. It, of course, is highly undesirable.

• You may want to consider tools, which provide the flexibility for you to

customize a process to best fit your situation and enforce your best

practices. Productivity enhancement tools are also important, because

small time saving become big one due to the repetitive and iterative

nature of Agile.

• It will pay off if you mandate certain critical modules are reviewed. Not

only more heads are better than one, but also more people are

knowledgeable of critical pieces. It, too, is true that developers will do a

better and more complete job, because they know others are looking over

their shoulders.

In summary, there are no hard and fast rules but the best process for a project.
What process to use depends on many factors such as the nature of the project

(complexity, management’s and end users’ expectations, etc.), the construct of

the team (skill sets, communication means, commitment, etc.). As mentioned in
the beginning, the intention of this article is to stir up more discussions, and,

hopefully, via your participation we can all benefit from each other’s knowledge
and experience.

About the Author
Mr. John J. Hsieh has more than 20 years of experience in software

development. He worked at Bell Labs for ten years where he involved in

development of many large-scale and mission-critical systems. He cofounded
CommTech Corp., which developed software systems for telecom applications. In

CommTech he led a software group with more than 120 software engineers. He

is the founder of Easy! Software LLC (www.easysoftwarellc.com). Mr. Hsieh has

BS and MS degrees in electronic engineering, and a master degree in business
administration. You can reach him at jjh888@easysoftwarellc.com.

