
Functional integration test planning
By Tim Van Tongeren <tim@testgeek.com>

Integration testing is the process of validating proper functionality between two or more
components. Some shops use different definitions of a "component", so first one should determine
the type of integration being performed. The most common use of the concept of integration testing
is directly after unit testing. A unit will be developed, it will be tested by itself during unit test, and
then it will be integrated with surrounding units in the program. Integration testing could also be
used to describe the validation of multiple programs in an application, multiple applications in a
company, or multiple companies in a network.

With an ATM machine, there may be several units that verify user data: bank account verification,
PIN verification, and bank account status verification. All of these individual units would be
integrated into the Verification module. The Verification module would be integrated with a
Banking module and a driver for the mechanical pieces, into the entire ATM application. After this
testing was complete, integration testing could occur between the ATM machines and the bank's
ATM application server. If the bank acquires another bank, the corporate ATMs would have to be
integrated into a new network. Each cycle of integration adds another layer until a comprehensive
test can be performed on the entire system.

Design
Now let's see how we can build test cases for functional integration testing. (We will not include
non-functional requirements concerning performance, usability, or security in this example.)
Suppose each of our ATM machines contains a verification module, a banking module and a
hardware control module. For this example, we will not cover every process inside the ATM and
we won't even touch the bank, just to keep it simple. Let's look at our hypothetical design.

- The verification module authenticates the user based on card number, PIN number and bank
account status. Upon successful authentication, it will pass the bank account number to the banking
module.

ATM Machine

Verification
Module

Banking
Module

Hardware
Control
Module Bank account

number Return
message

Number of bills
OR

command for deposit

- The banking module receives the bank account number and prompts the user for allowable
actions. The user can check account balances, request a withdrawal, or make a deposit. If a
withdrawal is selected and money needs to be delivered to the user, the banking module sends the
hardware control module a number, which indicates the number of $20 bills to deliver. If a deposit
is selected, the banking module sends the hardware control module the command to accept the
deposit.

- For a withdrawal, the hardware control module receives the number from the banking module and
attempts to deliver the required number of $20 bills. If it can deliver all the bills, it returns a success
message to the banking module. If it cannot deliver all the bills, it returns an error to the banking
module.

- For a deposit, the hardware control module receives the command to accept the deposit. Funds
from deposits are not immediately available for withdrawal. Deposits will be verified by a cashier
at the bank for validity. Because of this, the ATM will not behave differently for failed deposits.

- The banking module receives the return message from the hardware control module. If the
message indicates a success, the banking module records the debit transaction. If the return
message indicates a failure, the banking module records a failed attempted withdrawal.

Test Planning
In the verification module, we don't need to test each scenario of failure (invalid bank account,
unreadable card, wrong PIN for bank account number, or invalid bank account statuses such as
expired card, inactive member or deleted member.) These would each be tested during unit and
system testing of the verification module. Remember, the point of integration testing is to verify
proper functionality between components, not to retest every combination of lower-level
functionality. So we will want to test each unique message/action between the modules. Since the
verification module only sends a message to the banking module if there is a successful
authentication, we would only test a single failed authentication as a negative test, in order to verify
that the verification module does not send a message to the banking module.

Inside the banking module, there is no integration with the hardware control module during the
following scenarios: balance check, attempt to withdraw more money than the account contains and
cancelled transaction. However, we don't need to test all of these scenarios, so we would only test
one of them as a negative test. Positive tests would be run on the withdrawal and deposit processes.
There are two messages the banking module can pass to the hardware control module: deposit and
withdrawal. There are two messages the hardware control module can send back to the banking
module: withdrawal success and withdrawal failure.

Test Cases
Test Case #1: Deposit - Use a valid card with associated PIN to login to the ATM. Verify that the
verification module passes bank account number to the banking module. Select deposit. Verify that
the banking module passes the command to accept the deposit to the hardware control module.

Test Case #2: Withdrawal success - Use a valid card with associated PIN for an account with a
$100 balance to login to the ATM. Verify that the verification module passes bank account to the
banking module. Select withdrawal of $40. Verify that the banking module passes the command to
deliver $40 to the user. Verify that the ATM delivers $40. Verify that the banking module records a
successful withdrawal transaction.

Test Case #3: Withdrawal failed - Use a valid card with associated PIN for an account with a $20
balance to login to the ATM. Verify that the verification module passes bank account to the
banking module. Select withdrawal of $100. Verify that the banking module passes the command
to deliver $100 to the user. Verify that the ATM delivers no money. Verify that the banking module
records a failed withdrawal transaction.

Test Case #4: Negative test between verification module and banking module - Use a valid card
with an incorrect PIN to attempt to login to the ATM. Verify that the verification module does not
pass the bank account number to the banking module.

Test Case #5: Negative test between banking module and hardware control module - Use a valid
card with associated PIN to login to the ATM. Verify that the verification module passes bank
account to the banking module. Select the option to check account balance. Verify that the banking
module does not pass anything to the hardware control module.

Conclusion
The example we looked at is fairly typical of a functional integration test. It demonstrates several
components that pass messages between each other. It is at each junction between components that
integration testing occurs. In our case, the components were software modules inside an
application. In your case, it may be at the module, application, system or corporate level. Once you
determine the level at which you need to test, the next step is to understand each component at that
level. Then you can determine each component interaction. With this information, you should be
able to put together a comprehensive set of test cases.

