Process Implementation in Agile Projects

· Sushma Mudigonda
In the past few years there has been an increase in the software industry’s adaptation to the Agile methodology. We often encounter atleast 1 in 3 software development projects as ’Agile’. Sometimes, the project managers refer some of their projects as ‘Flavor of Agile’. I understand that ‘Flavor of Agile’ is some kind of tailoring done to the Agile methodology to fit the project needs. Typically no project would fit into the book definition of any methodology. Hence ‘Tailoring’ is usually an accepted norm.

In an era of CMMIs and Six Sigmas, software industry is putting onus on the processes being followed by the projects. But implementing a process for Agile methodology that can accommodate all the ‘Flavors’ is a difficult endeavor and as big a task as the project itself. In this article I explore some of the problems that we have encountered in implementing process for Agile projects and how we tried to address them with simple solutions.
Even before I discuss the process we implemented successfully, let me list some of the key elements of Agile methodology that posed a challenge to us:

Typical Agile Iterations are Time boxed: Is it true? If the projects are following typical Agile methodology, then variations in iterations never happen. But what I have noticed in reality has been contrary to this theory. In the name of Agile, software folks are taking liberty to make too many changes to the requirements. Sometimes, these changes are so volatile that the iterations are bumped off within 2-3 weeks and the next iteration starts off. Otherwise, these projects have all the flavors of Agile and we could still bring them under Agile umbrella. As service providers we need to track all the iterations to avoid any future friction with our clients. Implementing a process in such a scenario, capturing all the iterations is always a challenge.

Highly collaborative interactions between client and the delivery teams: More client involvement implies more suggestions/changes from the client. It also implies more bandwidth for communications. The key challenge was that the process should be able to capture and effectively implement all the changes. The process should also be able to reduce or atleast not increase the time spent on communications. While doing so the data integrity (data as in requirements/communications) needs to be retained.
Less documentation, more tool driven: Agile talks of people over process and tools. As a subset of this theory, after people, tools are given higher priority over process. Lean documentation and tool driven project management is one of the best practices advocated for Agile. Anyway, all activities may not be managed using tools. We cannot always get all the needed tools either due to budgetary constraints or due to the incomprehensiveness of the available tools. Hence, more often than not, templates replace the tools, which magnifies my problem. We also have greater challenge of implementing process in such projects where typically process in not welcome.
Daily status tracking through stand up meetings: Daily Scrum meeting is one of the key activities of Agile projects. Teams do meet for 15 minute standup sessions. But as a process person I need to have an evidence of what & how they are doing these activities. I also would want to gauge the effectiveness of these meetings. If no evidence, then the projects fail in the internal and external Audits. Hence the process should address this issue of finding the evidence and yet not burden the teams with additional overheads
Getting a formal client sign-off at various phases: A sign off helps the development teams to move in the right direction. In our kind of out sourcing model, it safe guards us from delivery and business risks. As mentioned earlier, process always looks for evidences, else projects fail in Audits. Evidence of sign offs is difficult due to the volatility of existing projects and both the client and consulting teams are always working towards meeting the release challenges. The process that we implement should be able to address this issue.
Metrics: Getting the right set of Metrics that can be fewer in number but encompass all the key activities is another challenge. Fewer in number because the delivery teams usually shy away from too much usage of metrics. They have no band width, remember?
I have to mention here the other constraints that we had while implementing processes. We are a service provider organization. Hence we need to be doubly careful in ensuring some sort of record of all the communications and agreements/sign-offs between us and the client. This would keep off any future friction or business loss. Also, we are working in different global locations where the time gap between us and our clients is at least 10 hours. Communication issues become key in such scenario. In the current Global financial crisis, sometimes budget does form a major constraint. And last but not least, the usual resistance to change management.
To define a practicable process for such requirements does appear to be a humungous task, but surprisingly it is not impossible. A teeny bit of additional planning and involvement of all the key stakeholders, in this case the project managers, helps.

Key for any process change is having a buy-in from the stakeholders. Therefore we involved all the Project managers right from building the Agile framework, designing templates, arriving at the tools that we want to use, metrics and project tracking processes. Then a framework has been defined. A fairly robust framework will have phases clearly defined, the activities that go into each of the phases, the Input and Output entities, any tools being used and best practices, if any. After coming up with the activities list, we decided on the input and output entities for each of these and came up with the minimal set that encompasses all the key activities.
Based on the minimal set and considering the issues we had on hand, we put some key processes in place that addressed our issues:
Management of Requirements using tools: For requirements management, a free source web based tool - XPlanner, has been used. XPlanner can be configured or enhanced to our needs. It solves most of the day to day communication issues between the client and the delivery team. User stories developed into tasks are populated in this tool. Any client comments/clarifications are also captured in the tool. Any changes to the priority list or user stories would reflect in XPlanner. No further requirements sign-off would be needed.

User stories may be broken into smaller activities which can be easily handled using XPlanner. Most of our communications issues had been addressed using this tool as both the client and off-shore teams are interfaced by this tool. XPlanner also works as our WBS.
Have a one time planning document: All the planning documents such as communication plan, configuration management plan, resource plan, risk management plan etc have been integrated into Integrated Project Plan document. This is a Word document and more or less a one time action (though may change when major changes to the scope/objectives). This document is done during the initial phase of the project when the team is still not occupied with project activities. Hence the documentation will not be an over head. All the subsequent changes are accommodated by XPlanner. Implying all static elements are defined in project plan and the dynamic ones driven by tool

Have daily stand up meetings with the team: The team meets daily for 15 minutes to discuss the project progress - what is done, what needs to be done. When the team sizes are large scrum of scrum meetings are done where in each module lead takes inputs from his team members. All leads discuss the progress with the manager. How do we get evidence of these activities? XPlanner will be visited during the daily standup meetings. Any issues in the work progress? Want to communicate to client? Want to document the issues for you to track? Update XPlanner with your comments for tracking.

This is also a right platform to discuss/analyze projects risks, if any. The whole team would automatically be informed about project risks and their mitigation.

Have Iteration completion criteria clearly defined: Iteration completion criteria to be clearly defined is a best practice. In reality, due to volatility of requirements, the completion criteria of Iterations are not defined. This is leading to all the confusion, especially when the iterations are bumped off in between and new iterations are started.

We mandated that Iteration completion criteria needs to be clearly defined by the client or defined by the development team and agreed upon by the client. This gives a definite direction to the development team in case of volatile requirements. Changes to requirements have actually been minimized atleast during the current iterations. Due to this iterations remained fairly consistent, exceptions being possible.
Automation of Unit testing (and if possible system testing): Automate the Unit test cases such as JUnit or NUnit testing. Reviews of test cases also need to be done. This may be avoided in case of pair programming. But code reviews always help and may be brought as best practices even in case of Pair programming

Provide Demo to client / key stakeholders: Demo the part developed in the current iteration. Discuss on the changes. Do a Bug triage along with client. Identify which of the unfixed bugs will go into the next iteration. Vey important! The teams will know well ahead what may go into the next couple of iterations. Documenting and sharing it with all the stakeholders would be a good practice and avoids friction later on.

Another definite advantage that we had out of this was that there was an increase in the team morale. They were confident of what they were doing and where they were arriving at. We actually noticed a decrease in the attrition. HR team will love us for this !!
Review after each Iteration: This is a retrospective. This is more a postmortem job and is more or less like the Milestone analysis. The whole team meets after each iteration, to discuss what went right and what went wrong. Lessons learned are documented, both for project and org repository. Previous iteration metrics are thoroughly analyzed and targets set for the next iteration. This helps in the quantitative project management. This is still not predictive but will help as history for future Iterations. Anyways, expecting too much of predictive project management in Agile does get difficult!
Sample Iteration Completion Report:
	Quantitative Analysis
	

	Criteria
	Metric Value
	Remarks/Justification
	

	Effort Variation
	
	
	

	Requirements Stability
	
	
	

	Requirements Status
	
	
	

	Code Review Effectiveness
	
	
	

	Defects found by Client
	
	
	

	Productivity
	
	
	

	Additional Comments, if required
	
	
	
	
	

	
	

	
	
	
	
	
	
	

	Qualitative Analysis
	

	Things that went Wrong
	Causal Analysis & Recommendations
	

	< Issue 1 >
	
	

	< Issue 2 >
	
	

	< Issue 3 >
	
	

	< Issue 4 >
	
	

	Additional Comments, if required
	
	
	
	
	

	
	

	
	
	
	
	
	
	

	Things that went Right
	Recommendations
	

	< Findings 1 >
	
	

	< Findings 2 >
	
	

	< Findings 3 >
	
	

	< Findings 4 >
	
	

	Additional Comments, if required
	
	
	
	
	

	
	

Key Metrics Identified:

Requirements Stability – A key one as it tells us how stable requirements have been in each iteration. This is measured as Total # of Requirements planned/ Planned + Changed. Unit of measurement is percentage. A requirement stability of 90% above should always yield good results in terms of schedule and quality
[image: image1.png]Discovared A1) Added (15)
Caried Over G)

REQUIREMENTS STABILITY Planned 287)

Requirements status – This is again is in percentage. At the end of iteration, it gives us the percentage of planned requirements that could be completed in the current iteration. When analyzed against the Requirements stability, we would clearly understand how it has impacted the development work.
[image: image2.png]REQUIRMENTS STATUS

Open@®)
Devkixe

mplsted 272)

W Open@a) M Deveixed @0)
Completed 272)

Iteration Accuracy – (Actual effort - Planned effort) * 100/ Planned effort. Variations between the planned and actual effort may be known. Based on this data, estimations are done for the next iterations.
Defects in User testing – A very useful one in identifying the test effectiveness. If more defects were caught in user testing, all the preceding verification activities such as reviews, Unit testing, system testing have to be strengthened in the subsequent iterations.
A burndown chart helps us monitor progress during an iteration. It captures the current status as well as the rate of progress of completing the remaining tasks. Below given skewed chart is a good example of how the Requirements stability would impact the burn down.
[image: image3.png]Remaining Hours

1700
1200
1500
1400
1200
1200
100
1000
00
e00
700
o0
=00

00
200
100

ITERATION BURNDOWN

20080520,

27

B

2

E

20080802

Date

18

19

B

2000623

24

2

2

20080830,

20080707

To sum up, the key advantages of the implemented process had been:

It was a scalable process and could be applied to most of the Agile projects with minor tailoring
XPlanner could be used to get all the needed charts, hence monitoring was made easy
Solved most of the communications issues as tools acted as interface
Mistakes done in one iteration were not carried forward as review was done after every iteration and issues thoroughly analyzed. Hence implementation issues were sorted in the first couple of iterations
No fancy metrics that the team could not relate to
Daily stand-ups helped the team understand the project status. Also, it helped build the team confidence in the project progress. Since any requirement related issues were listed in XPlanner, team received clarifications immediately that helped save majorly on time.
