[image: image1.png]

The Software Productivity Crisis – How Do We Cope ?

By Michael D. Sowers

[image: image2.png]

[image: image3.png]

Software Productivity Down Software Risks Up

What’s the issue ?
Businesses worldwide lose $500 billion each year due to software failure. Here are a handful of recent examples:

· Hershey suffered a $200 million decrease in revenues in Q399 due to a software glitch that prevented Halloween candy from being shipped (The Payne Report – Sept 2000)
· eBay market capitalization decreased $5.7 billion when investors lost confidence when systems crashed due to a software problem (The Payne Report – Sept 2000)
· The SEC has fielded over 20,000 complaints from investors experiencing online trading and banking bugs (The Payne Report – Sept 2000)

· Web applications can actually only handle an average of 72% of the concurrent traffic volume that is originally planned for them (Newport Group Study, June 2000)

If you don’t resonate with the above, how about these (Business Week December 99 “Software Hell”);

· A major electronic commerce site suffers 22 hour system crash

· A network crash cripples thousands of credit-card readers and bank ATM’s

· A Traffic Collision Avoidance System malfunctions appearing to place two jets on a collision course

· Medicaid recipients suddenly find their coverage mistakenly terminated

Any of these issues sound familiar ?

· Our software projects are consistently late

· We’ve missed a key market opportunity

· Customers are complaining about the poor quality of our Software

· We shipped 39 patches immediately after the release

· Our telephone support team has doubled in staff

· Our eCommerce site continually crashes

The demand for new software capabilities continues to fuel rapid growth within the software industry as software companies strive to deliver new features and products, yet our ability to produce these software products on-time, within budget and at the required quality levels, remains a challenge to most software development organizations.

For eCommerce, IT, Finance, Telecommunications, Embedded Systems suppliers and others the trend is similar; we need to rapidly architect, design, develop, test and release software but are constantly confronted with the frustration of “yet another significant defect” discovered either before or after product release which impacts our schedule, frustrates customers and cost us money.

The good news is that our software development capability (our people, our development methods, and development tools) have significantly improved over the last couple of decades. New 4th generation programming languages such as C++, Java, HTML and other object oriented approaches to design and development have allowed software producers to increase their daily code production. The need for more software products has produced more highly skilled programmers, off shore development shops have increased the number of available core competencies and software development tool vendors have delivered technology which speeds the implementation of new code.

The bad news, is that our ability to produce software has significantly out-paced our ability to test software. I call this the “software productivity crisis”. Our ability to effectively evaluate and correct software defects prior to delivering software products and systems to our customers is woefully inadequate. In our own company’s experience, working with several hundred High Technology firms each year, we see a consistent theme; “we can’t ship (yet) because there are too many bugs, there are too many bugs because we don’t have adequate capability to prevent or remove them, thus we’ll miss a market opportunity once again...” Of course, there is a variation on this theme; “there are bugs, but we’ll ship anyway”, this introduces risks to both companies and to customers and results in higher costs, dissatisfaction, and in some cases law suites !

The demand for new “really cool” software features will continue to increase for the foreseeable future. It also means that the amount of code that we produce per day around the world is steadily increasing and as the “world’s code base” grows, so does the “world’s defect base”.

So What Can We Do About This Software Productivity Crisis ?

There are numerous approaches to addressing this productivity crisis and getting control over the defects within the software products we produce. Three fundamental steps we can take are 1) secure the necessary technical expertise in bug prevention and detection, 2) define a few fundamental defect avoidance and (pre-release) defect identification practices and 3) implement a small number of the right tools for the job.

· Secure the necessary bug prevention and detection expertise; contrary to traditional opinion, the art and science of being a good tester is an “engineering profession”. That is; it requires specific core competencies in software test engineering and the methods, tools and practices used to prevent and detect defects. These skills are like that of a medical doctor that must diagnose the cause of an illness (defect) or help the patient practice “illness prevention”. For the most part, our academic institutions have not yet embraced the science of software testing and there exist a void in software testing knowledge with many engineering graduates. Thankfully there are many commercial organizations that are filling this void, while our academic institutions catch up. The biggest challenge our software producers face in the short term is finding qualified software test engineers. In one area of the U.S alone, it’s reported that there are over 8500 job openings for professional software test engineers. There are no easy answers to this challenge. We must grow, acquire, outsource, compensate, reward, nurture and retain our software testing resources creatively and consistently. The key decision required by software producers is making an intentional investment either in growing software test core competency or in outsourcing it.

· Establish a few defect avoidance and identification practices; like any sound engineering practice, there are a set of defined testing steps that once customized, will contribute to defects being identified earlier in the product life cycle or even prevented. There are hundreds of such practices each with their own benefits and baggage depending on a particular company’s environment, maturity level and the nature of the applications produced. For example; technical reviews and inspections have long been the favored approach to reviewing requirements documents, functional specs, code, test plans and other related technical documentation required to produce a quality software application. Recent advances in these and other defect prevention and detection methods are allowing project teams to collaborate on internationally distributed development projects conducting technical reviews over the internet.

· Implement a small number of tools to support the testing practitioners; at last count, there were over 1900 software testing tools available from a wide variety of test tool vendors. In the past, these tools were very focused on automating work done primarily at the “backend” of the product development life cycle – just prior to release. Today; test technology exist not only for the end game, but for most parts of the product life cycle. Two key technologies that are demonstrating success are; software design through “use models” using such techniques as the Unified Modeling Language (UML) and software test design tools which de-couple the tasks of automating tests from the tasks of specifying tests. Both these techniques allow software producers to “get it right the first time” by beginning the testing work before and in parallel with the code being written.

The need for software producers to “deliver more code faster and cheaper” has never been more urgent. Our productivity is being limited by our ability to effectively prevent and remove software defects. Defects shipped to our customers cost us all money and cause us to miss market opportunities. To address this software productivity crisis we must take an inventory our capability (people, processes, tools) and address any gaps in our “defect prevention and detection” investment. While many software test techniques and test technology have not advanced at the same rate as development practices and tools, there are some break through testing approaches and tools now available which are being effectively used to begin to close the gap. Reversing this trend (productivity down/risks up) takes a little time, but the business benefit far outweighs the costs. Think about it; would you like to leave a legacy of contributing positively to the world’s code base or negatively to the world’s defect base ?

About the Author

Michael D. Sowers, executive vice president of SDT www.sdtcorp.com , has over two decades of experience in the software engineering and software quality fields with extensive experience in software development and testing. Michael has held numerous roles throughout his career from developer to tester to Chief Quality Officer developed and led notable software quality and testing organizations in Japan, the United Kingdom, Holland, India and the USA. Michael can be reached at mike@sdtcorp.com 603-668-5955 x201.

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

Copyright Software Development Technologies – 2001 All rights reserved

[image: image4.png]

[image: image5.png]SOFTWARE DEVELOPMENT

TECHNOLOGIES

_1041682625

_1041682593

