Managing Vendor Code Customizations
with Stream-based SCM

Why Streams Are Easier than Traditional Branches

David P Thomas
dave@accurev.com

Summary

Customizing or extending third party “vendor’usce code is becoming increasingly
common especially with the availability of open-smisoftware. Building upon existing code
increases your time to market and lets a groupxpkrs elsewhere develop the foundation.
Vendors typically provide frequent patches and rieatures in the form of vendor releases.
Managing the incorporation of vendor releases amlggcustomizations requires an additional
layer of configuration management. Traditional notabased software configuration
management (SCM) tools require an unnecessarilypbranch and merge process. This
article describes how stream-based SCM provides oge nintuitive and efficient parallel
development model for managing customizations tawoe code.

The Challenge

Managing customizations to vendor code requiresdudtitional layer of configuration
management to integrate subsequent vendor reledsssdor code must be imported, merged
with the previously imported vendor relejsenerged with a selected set of compatible
customizations, and finally merged with one or margive codelines. The challenge is to
independently track vendor code and orchestratectte¢ merging and releasing of custom
features with vendor upgrades without jeopardizindisrupting active codelines.

Why Traditional Branch Models Are Difficult

Traditional branch-based SCM models utilize numsimanches to track in parallel both
vendor source and custom modifications. In aclpbranch model, mainline represents the
centralized development codelfna single vendor branch off of mainline isolatesl aracks
vendor code, feature branches off mainline isotatstom development work, and releases
branches off mainline isolate custom releasestriét £oordination of branch-to-branch merges
is required to propagate changes between varioowioations of branches without violating
branch integrity.

! Vendor merge Not necessarily the most recent version of theloe release.
2 Central codeline mainline is the source of all branches and tistidation of all merges. This prevents creating a
difficult to manage staircase model of branchingxeheach subsequent release branch is basedpktheus.

V1.0 July 17, 2006 Page 1 of 8

Managing Vendor Code Customizations with Streaned&&CM

" Custom
Release 1.0

Custom (Trelease _ } ReleasePrep |
Code ol
@ Feature-2
| /mainline :
Vendor 6.0
Vendor -
_ranc
Code

Vendor 6.0

Figure 1 — Traditional branch model for vendor-base custom 1.0 release

The diagram infigure 1 shows a branch model for a new project trackingustom
release based on vendor code. The project ire@mple is initialized by importing 6.0 vendor
code into the mainlife The vendor code is tracked independently onral@ebranch (label a).
Custom features are developed on dedicated feararehes (label b) and eventually merged
into the mainline (label c). The custom 1.0 reéchsanch (label d) is used to prepare the release
(e.g. environment configurations, patches, official itgg), provide isolation for release specific
customizations, label release candidates, and permnmterrupted merging of parallel future
development onto mainline. Once the custom relbesmech is tested to satisfaction, it is labeled
as “1.0” and merged into the mainline (label e)heTcustom 1.0 release branch tracks two
custom features based on vendor 6.0 code indepenfiéime unmodified vendor code isolated
on the vendor branch.

The diagram irfigure 2 is a continuation of the previous branch modehlngnting a
vendor upgrade, a patch, and a new custom reledfggrading the vendor code requires
importing and merging the 6.1 vendor release iheovendor branch, also known as a “vendor
drop” (label f). A vendor-merge branch is creat®anerge between the upgraded vendor code
and mainline containing all current customizatidiadel g). This branch isolates the mainline
from any merge-specific problems such as custortufeancompatibility or file hamespace
collisiong. When the merge is successful, the vendor-mergech itself is merged into the
mainline (label h). A custom release branch entbreated to prepare the 2.0 release (label m).

% Vendor import: Some SCM systemg.§. CVS) have a built-in facility for handling vendoranches.
Alternatively, first importing the vendor code t@eparate branch and then merging into mainlisefiicient.
* Namespace collisionThe upgraded vendor code may have a new file thigdrsame name as a customized file.

V1.0 July 17, 2006 Page 2 of 8

Managing Vendor Code Customizations with Streaned&&CM

| Custom

Release 1.x
£ {_Patch-1 4 1. |
Vendor 6.0
r A |
[I
{ -' -
I
| Custom |
| Release 2.x |
| I
Custom | [foranch }~ Merge im| [release]——:—i Merge
I Vendor6.0 A Vendors.1 | Vendor6.1 | A Patch-1
COde | Feature-1 Feature-1 Feature-t | | |
: Feature-2 Feature-2 | | Feature-2 : | A i
I | ['
(Tmainine) o y A A' Y y

Vendor 6.0

Vendor
Code

| A

(e
Vendor 6.0

Figure 2 — Traditional branch model for vendor-base custom 2.0 release

In the meantime, a defect is patched on the cudt@melease resulting in a custom 1.1 release
(label i). This patch is also merged into both miae and custom 2.0 release branch to prevent
regressions (label k). After preparing and lalgeline custom 2.0 release, all changes are then
merged onto mainline (label n). The custom 2.@as¢ branch tracks two (previous) custom

features and a new patch all integrated with themtdy upgraded vendor 6.1 code.

One serious caveat with the above vendor upgratieatsll custom features present in
the mainline are merged with the vendor 6.1 coddhm vendor-merge branch (label g).
Integrating only a subset of features with a vengmgrade requires un-merging custom features!
In fact, thisis what will need to be done in order to preserventitee as the central development
codeline. Taking a step backgure 3 shows a highly undesirable branch model to support
feature-by-feature vendor upgrade releases. Tgerselect features with the vendor upgrade, a
custom release branch is based off the vendor bréabel p) and merged with selected feature
branches (label r). In this scenario, Feature-8 Batch-1 are merged, but not Feature-1.
However, this violates the policy and SCM best ficac of mainline being thecentral
development codeline and causes a decentralizatiorelease branches! Creating custom
release branches off of both mainliad the vendor branch quickly turns into an unnecdgsar
complex web of branching and merging.

V1.0 July 17, 2006 Page 3 of 8

Managing Vendor Code Customizations with Streaned&&CM

[foranch)} Feature-2 |

Vendor 6.0

elease 1.x

Custom | —r— i |

' Custom |
R |

COd 8 / Vendor 6.0 : } Vendor 6.0 |
1 Feature-1 |
L& Featurs-2 |
(/mainline } * y L ' 1
Vendor 6.0 : }
I I .
Vendor |\ | [
/branch -
Code o] : | with mainline!
| A
I |
| |

\ ‘0‘
r s P —
{ /release)——Y—l Merge J)—!lPatch1_’
Vendor 6.1 Feature-2 Patch-1

Custom
Release 2.x

Figure 3 — Traditional branch model for managing fature-by-feature vendor upgrades

Relying on branch-based SCM models to manage custions to vendor releases
requires a complicated orchestration of merges éatwumerous branches. While this example
highlighted only two custom releases, a single lpaand a single vendor upgrade, the situation
quickly becomes overwhelming when considering mldtvendor upgrades and multiple custom
releases. Lastly, additional complexity arises mhensidering the propagating of patches
between mainline, compatible feature branches, atenderge branches, custom release
branches, or all of the above. It should be cfean this example that the traditional branch
based solution quickly becomes unwieldy.

How Streams Make It Easy

Imagine rotating the branch model figure 2 clockwise 90 degrees, and allowing
automatic inheritance of changes between adjacamiches. Now you are starting to think in
streams. A stream based SCM architecture intijtiveodels parallel development with
independent, customizable workflows that make nmgrgimpler with automatic inheritance of
changes.

Streams can be thought of as “intelligent” brancinelévidually representing a specific
configuration of source code. In more detail, reeh contains a specific version of each and
every file visible to the stream. When a developeeds to modify code, they simply create a
workspace stream from any stream and instantly aitable access the all the files for that
specific configuration. Likewise, when code netmibe deployed, it is simply extracted from a
stream to a local directory and packaged.

V1.0 July 17, 2006 Page 4 of 8

Managing Vendor Code Customizations with Streaned&&CM

Streams are organized in a parent-child hieraralsg called a “stream hierarchy”. A stream
hierarchy is a tree of streams that intuitivelyide$ a promotion-based software development
workflow. Each stream in the workflow representstage in the process such as development,
integration, QA testing, or SOX auditing. Changasve up the hierarchy by being promoted.
To control promotions, streams can be locked by aseole. For example, only members of the
release engineer group can promote to or from st@@am. Streams also have a unique, built-
in feature that allows configurations to be autaoadiy inherited down the entire hierarchy from
parent to child. This inheritance allows newés fiersions higher up in the hierarchy to become
automatically available (for update) lower in therhrchy. Imagine fixing a defect in your 6.1
QA stream and having the patch automatically akikaléo all 50 developer strearagerywhere

in thesub-hierarchy.

Vendor Code Vendor Finished Custom QA / Integration
Only Releases Changes Workflow
[L ¢ L L i ¢ 1
=Y - e = s — [ote B vy
8 HEC Vendor={@s Vendor-6.1 =8 vendor-6 1-custom| =18 vendor-5.1-0a—3148 vendor5.1.nt | x
] & A B & ‘E
£ A
g © 2 1 @
bt =3 . : 3
r =i vendor-6.0 =2 vendor-6.0-custom| =148 vendor-50-0a—#18 vendor6.0.int | =
— X # By
- ao . x
2L :) z
=T ; £
a3l S
> O =
2 :
S U

Figure 4 - Stream model overview for vendor-basedustom releases

The diagram irfigure 4 shows a stream hierarchy that models the padgtiopment of
custom features based on vendor code. Vendorisddgorted and independently managed in
the base stream Vendor. Snapshot streams offfatbe stream are immutable labels that capture
the configuration of each vendor release (labedra) serve as named stable bases for version-
specific custom development codelines (label lach development codeline in this example
creates workflow streams named Integrafiion), QA, and Custom to model the development
process (label c). New development occurs in waake streams off the Integration hierarchy
(not shown) and is eventually promoted, merged,tastid through both the Integration and QA
streams (label c). Finally, the changes are prechdd the Custom streame(production)
where a snapshot stream is created to label th@abf€ustom release (label d). The green box
below a stream indicates that changes are presehinherited downstream. The lock icon
signifies that promotions are controlled by usegmup. Compared to the branch model, the
stream-based model is a more natural organizatiovendor releases, custom releases, and
custom development workflows.

V1.0 July 17, 2006 Page 5 of 8

Managing Vendor Code Customizations with Streaned&&CM

Vendor Code Vendor Code Custom Feature Feature Feature
Only Import Area Changes Testing Integration Development

(il Tl g 1 L 1

f
.:':l'-’-?: Vendor 2] vendor-mport_ci !
@ (workspace stream)
'-ICD. Wendor-6.0 |—:_{ R Vendor-ﬁ.ﬁ-(:us{oml——':.-{ Vendor-B.U-QAl——'.—.-{ % Wendor-6.0-Int —-I ~ Feature-1 2 Wspace_benjamin|
&| Vendor 6.0 (antoce siedm)
Feature-1 A ~
_- wspace_dthomas

Feature-2 (workspace stream)

173
S o
‘g :.E- '.—Z-I_i':. Feature&}—' & vwspace_william]
g % (workspace stream)
90
< ' %
-
z
o
2
[7;]
. o
) | | J \)
Vendor Custom Release
Release Release Candidates

Figure 5 - Stream model for vendor-based custom 1@lease

Starting a new project based on vendor code regjgiraply importing the vendor code,
creating a vendor release snapshot stream, andgseft a development codeline with streams.
The diagram irfiigure 5 is a stream structure for a new project trackiagdor code and creating
a custom release. The vendor 6.0 source codepisried into the base stream from a workspace
stream and a vendor release snapshot stream tedigagbel a). This snapshot stream serves as
a stable basis for the 6.0-based custom developooeieiine. Custom features are developed in
workspace streams and eventually promoted to réspdeature streams (label b). Individual
feature streams support collaborative developmetwden team members and can also be used
for user acceptance testing (UAT). As featuresobex mature, their changes are promoted to
Integration to be merged with other features (labjel Keep in mind that features can be
promoted when they are either fully or partiallynguete. The frequency of promotion is
directly proportional to the level of continuougdgration as promoted changes are immediately
inherited by other developers down stréaminheritance is the key to simplified merging
because developers have the option to integrateaotiter (promoted) features before their own
work is completed. Gone are the days of complicélbeg-bang” merges at the end of feature
development! After smoke testing in Integratidre thanges are promoted to QA and subjected
to black-box regression testing (label c¢). Optlgnammutable snapshot streams off of QA can
be used to label tested configurations providing¥Q0% reproducibility of test builds. When
testing in QA is complete and the release is sdeédthe changes are promoted to Custoen (
production) and a snapshot stream is created cagttire custom 1.0 release (label d). So far,
the stream hierarchy has organized vendor codgeémdkent of a custom release and provided an
intuitive workflow for developing, testing, and ealsing customizations.

® Inheritance Model: inheritance is calculated automatically but updps stream to retrieve the inherited changes
is manual. The developer decides when to physgigatbrporate external changes to their workspaeam.

V1.0 July 17, 2006 Page 6 of 8

Managing Vendor Code Customizations with Streaned&&CM

Vendor Code Vendor Code Custom Feature Feature Feature
Only Import Area Changes Testing Integration Development
[X il h T | j T i (8 3 1
=—.E|' = \,-'endor}——[: vendor—impor‘t_dlhomas|
(workspace strear)
—!.—-{m. Wendor-6 .1 '—:— A Vendor-8.1-Cus‘tDm)——::f-|- = Vendor-6.1-Qa) 2:4 1 Wendor-6.1-Int l—f-i A Feature-l.ipgmda’— - wspace_dlwnasl
[= = &, |(workspace stream)
32 Vendor 6.1 Q F';‘ 2 o
5% Featinez i b
02 o Patch-1
=T Patch-1 £
-8 8
P ;
_ : 3]
- L=l vendor-6.0 [—={ vendor-6.0-Customi-—=1 vendor-6 0-Gaf-—={ vendor-5.04nt A Feare. @ vwspace_perama]
[¢&] vendors.0
Feature-1 SR Feature 1._.| i ¥
Feature-2 | f i = = I
Patch-1
A patcna {21 wspace doug |
- (workspace siream)
o w
22
E = i e siream)
2% -
20
©
x
-
£
5
w
e 3
3
L) L J4)
Vendor Custom Release
Releases Releases Candidates

Figure 6 - Stream model for vendor-based custom 21@lease

The power of this stream model becomes further extigust after the first vendor
upgrade.Figure 6 is a continuation of the previous stream structiighlighting a vendor
upgrade, a new custom release, and a feature-hyréemerge. The upgraded vendor 6.1 source
code is imported and merged into the base stream & workspace stream and a 6.1 vendor
release snapshot stream is created (label f). Sitapshot stream serves as a stable basis for the
6.1-based custom development codeline. Meanwhilgarallel, a custom patch to the 6.0-based
codeline is developed, promoted, and capturedcinsséom 1.1 release (label i). Now it's time to
consider migrating customizations to the 6.1-badedelopment codeline. At this point, all
tested and released 1.x customizations are locatdek 6.0 “Custom” stream. Which features
should be migrated? Stream-based SCM can suppmrtgbing changes at either the file level
or the feature level using change packg@&omoting by feature makes it very easy to picé
choose features without concerning over which d$jgefiies were involved in a given feature
development. In this example, Feature-2 and Pht@re migrated across codelines by
promoting to a workspace stream (label h). Upoomation, the migrated features will be
merged with vendor 6.1 code and tested for comiiitiflabel k). Performing this merge in a
workspace stream prevents conflicts from being ritdd and available for update by other
developers.

® Change Packagesusing change packages allows developers to coatiégroup changed files as a single
“feature” set. Developers can be prompted to ntakeassociation when promoting file from their pt stream.
In the development workflow, using change packaugports promoting or migrating “by feature” rathiean file-
by-file.

V1.0 July 17, 2006 Page 7 of 8

Managing Vendor Code Customizations with Streaned&&CM

When the merge is successful, everything is (ewdigjupromoted to 6.1 Integration, QA, and
Custom (label n). A custom 2.0 release snapshedrstis created capturing a feature and patch
merge with the upgraded 6.1 vendor code. Afterong unused streamfgure 7 shows the
final stream structure modeling two vendor upgraates three custom releases.

Vendor Code Vendor Finished Custom QA / Integration
Only Releases Changes Workflow
(¥ i i LI i 1
e = P - RSN P [. -
S 2 [[P vensor i Vendor-6.1 =18 vendor-6.1-Custom|—={i vendor-5.1-0a & vendor5.1-nt | x
& B F1EY @ ‘;
- 5
. i
w - =
" & Vendor-60 =1 vendor-6.0-Custom|—={38 vendor-5.0-aa—+{%R vendor-5.0-nt | ™
| Y
_g E e s
E3 .
>T E
el 5
2 O -
2 ;
S U

Figure 7 — Final stream model organizing two vendoupgrades and three custom releases

Conclusion

Managing third-party “vendor” based customizatiaegjuires an additional layer of
configuration management to track vendor upgradesgaide custom releases. To be
successful, vendor code must be tracked indepemdé¢hé dedicated codelines used to develop
custom releases. The challenge is to independértbk vendor code and integrate vendor
upgrades with select customizations while presgntive integrity of the active development
codelines. Branch based models utilize numerowdhres and require a cumbersome
orchestration of merging to be successful. A strbased model provides a more intuitive
solution by using parallel codelines, stream irtaege, feature merging, and a promotion-based
workflow. In general, the quality of software gresses from an immature state during
development to a mature (tested) state in the gelea stream based model supports defining a
methodical workflow that models the natural evalotof software from development to release.
Compared to traditional branches, the stream-basedel presented in this article provides a
more natural way to manage vendor based custominzati

References
Berczuk, Stephen. Softwa@onfiguration Management Patterns. Addison-Wesley, 2004.

“CVS Vendor Branches'http://ximbiot.com/cvs/manual/cvs-1.11.22/cvs_18ihtJuly 1 2006.

“Subversion Vendor Branchedfittp://svnbook.red-bean.com/en/1.1/ch07s05.hiiodly 1 2006.

Perforce Vendor Branchedittp://www.perforce.com/perforce/technotes/notebtibl. July 1
2006.

V1.0 July 17, 2006 Page 8 of 8

