
 
    

      
 

 

 
 

  Hitex Germany 
– Head Quarters – 
Greschbachstr. 12  
76229 Karlsruhe  
Germany 
 

 +049-721-9628-0 
Fax +049-721-9628-149 
E-mail: Sales@hitex.de
WEB: www.hitex.de

  Hitex UK 
Warwick University  
Science Park 
Coventry CV47EZ 
United Kingdom 
 

 +44-24-7669-2066 
Fax +44-24-7669-2131 

  Hitex USA 
2062 Business Center Drive 
Suite 230 
Irvine, CA 92612 
U.S.A. 
 

 800-45-HITEX (US only) 
 +1-949-863-0320 

E-mail: Info@hitex.co.uk Fax +1-949-863-0331 
WEB: www.hitex.co.uk E-mail: Info@hitex.com

WEB: www.hitex.com 
 

 
      
     

White Paper   

Is 100% Code Coverage Enough? 

 

   
   

 The objective of this paper is to define some commonly used 
code coverage measures and to discuss their strengths and 
weaknesses. Also the relation between the measures will be 
discussed. Small examples are used to illustrate some 
measures and to indicate common traps and pitfalls. 

 

Eventually, we will be able to rate the value of code coverage 
in general and what it means if we have reached 100% of a 
certain coverage measure. 

   
   

    
  Product: TESSY 
 Author: Frank Buechner  

  Revision: 12/2008 – 002 
    

   W
hitePaper.dot - 11/2007 - 005 

© Copyright 2008 - Hitex Development Tools GmbH 
All rights reserved. No part of this document may be copied or reproduced in any form or by any means without prior written consent of Hitex Development Tools. Hitex Development Tools retains the 
right to make changes to these specifications at any time, without notice. Hitex Development Tools makes no commitment to update nor to keep current the information contained in this document. 
Hitex Development Tools makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hitex 
Development Tools assumes no responsibility for any errors that may appear in this document. DProbe, Hitex, HiTOP, Tanto, and Tantino are trademarks of Hitex Development Tools. All trademarks 
of other companies used in this document refer exclusively to the products of these companies. 
 

mailto:Sales@hitex.de
http://www.hitex.de/
mailto:Info@hitex.co.uk
http://www.hitex.co.uk/
mailto:Info@hitex.com
http://www.hitex.com/


White Paper: Code Coverage   

Preface 
In order to keep you up-to-date with the latest developments on our products, we provide White 
Papers containing additional topics, special hints, examples and detailed procedures etc.  
For more information on the current software and hardware revisions as well as our update service, 
please visit www.hitex.de, www.hitex.co.uk or www.hitex.com. 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 2/30 
 

http://www.hitex.de/
http://www.hitex.co.uk/
http://www.hitex.com/


White Paper: Code Coverage   

Contents 

1 Introduction 4 
1.1 Motivation 4 
1.1.1 Confusing Nomenclature 4 
1.1.2 Complex Measures 4 
1.1.3 The Hunt for a Percentage 4 
1.2 Objective of this Paper 4 

2 Code Coverage Measures 5 
2.1 Statement Coverage 5 
2.1.1 Statement Coverage Example 5 
2.1.2 Appraisal of Statement Coverage 6 
2.2 Branch Coverage / Decision Coverage 6 
2.2.1 An if-Statement Has Always Two Branches 7 
2.2.2 A Pathological Situation 8 
2.2.3 Consecutive Switch Labels 9 
2.2.4 Relation of Branch Coverage To Statement Coverage 11 
2.2.5 Appraisal of Branch Coverage 11 
2.3 Condition Coverage 12 
2.3.1 Complete and Incomplete Evaluation 12 
2.3.2 Overview of Condition Coverage Measures 13 
2.3.3 More Examples of Condition Coverage 19 
2.3.4 Appraisal of Condition Coverage 25 
2.4 Path Coverage 26 
2.4.1 Boundary Interior Coverage 26 

3 The Value of Code Coverage 27 
3.1 Essential Step / Reveals Untested Code 27 
3.2 Can Indicate Project Progress 27 
3.3 Two Weaknesses of Code Coverage 28 
3.3.1 Cannot Detect Omissions 28 
3.3.2 Insensitive to Calculations 28 

4 Recommendations 29 
4.1 Should Be Reached by Functional Test Cases 29 
4.2 Should Be Done During Module/Unit Testing 29 
4.3 Select the Right Measure 29 

5 Conclusion 30 

6 The Author 30 

Literature7  30 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 3/30 
 



White Paper: Code Coverage   

1 Introduction 

1.1 Motivation 

Software quality improvement, customer demand, or standards like [DO-178B] or [IEC 61508] require 
or recommend the measurement of coverage based on the code structure. 
Unfortunately, some confusion exists with respect to the nomenclature. Furthermore, the measures 
are sometimes hard to understand and sometimes the difference between two measures split a very 
fine hair. 
Even if you have reached 100% by appropriate means, there may be still some flaws in the tested 
software, because code coverage is insensitive to some kind of problems. 
 

1.1.1 Confusing Nomenclature 

Confusion with respect to the nomenclature relates even to the name of the topic we want to discuss 
in the following. It is sometimes simply called "code coverage", but also "control-flow-based coverage" 
and "structure-based coverage" or "structure coverage". (We will adhere to the term "code coverage" 
in the following). 
Sometimes people also take the term "white-box testing" synonymous to "determining code coverage", 
what at least neglects data coverage. 
Confusion with respect to the nomenclature is continued with other terms related to code coverage. 
Different terms are used to denote exactly the same measure, e.g. the same measure is called 
"decision coverage" in [DO-178B] and "branch coverage" part 7 of [IEC 61508].On the other hand, 
terms are ambiguous: E.g., statement coverage sometimes is denoted "C1" and sometimes "C0". 
 

1.1.2 Complex Measures 

Most of the measures discussed have rather complicated definitions. Therefore, it is often hard to 
understand what a certain percentage of a measure exactly testifies and how different measures are 
related to one another. 
 

1.1.3 The Hunt for a Percentage 

In practice, an objective to reach a certain percentage of code coverage is sometimes achieved by 
inappropriate means. Sometimes, tests using random test data are executed, without verifying the 
outcome of such tests against an expected result. Furthermore, test data is created primarily based on 
the structure of the code under test and not on the specification of the functionality. 
Even if you have reached 100% code coverage, can you rely on that being enough? 
 

1.2 Objective of this Paper 

The objective of this paper is to define some commonly used code coverage measures and to discuss 
their strengths and weaknesses. Also the relation between the measures will be discussed. 
Small examples are used to illustrate some measures and to indicate common traps and pitfalls. 
Academic comprehensiveness is not the ambition. Exactness may be sacrificed for understandability 
and brevity. 
Eventually, we will be able to rate the value of code coverage in general and what it means if we have 
reached 100% of a certain coverage measure. 

© Copyright 2008 Hitex Development Tools GmbH Page 4/30 
 



White Paper: Code Coverage   

2 Code Coverage Measures 
Code coverage is based on the control-structure of a piece of software respectively the flow of control 
achieved by the execution of a test case for that piece of software. Code coverage counts the 
execution of items and relates this number to the total number of items in the piece of software in 
question. Such items are typically statements, branches, conditions, paths. These will be discussed in 
the following. 

 
Fig. 1 Code coverage is a relation and is usually expressed in percent 
 
 

2.1 Statement Coverage 

Statement coverage ("Anweisungsüberdeckung") reports about execution of (executable) statements. 
Statements can be assembler statements or statements of the C programming language, etc. 
Statement coverage is sometimes called line coverage ("Zeilenüberdeckung"). In case each line holds 
only one executable statement (what is automatically the case with assembler programs), the 
equivalence is obvious. To have equivalence also if a source code line can hold several statements 
requires that all statements in that line are executed. 
Statement coverage sometimes is denoted "C1" (e.g. in [BEIZER]) and sometimes "C0" (e.g. in 
[THALLER] and in [SPILLNER]). Therefore, please use these identifiers with caution. 
 

2.1.1 Statement Coverage Example 

Statement coverage is a weak measure. To illustrate this, we consider the following example: 
 
  √  int a = 0; 
  √  if (decision) 
     { 
  √      a = 1; 
     } 
  √  a = 1 / a; 

Fig. 2 Code excerpt to illustrate the weakness of statement coverage 
 
In the example above, we assume that all executable statements (respective lines) of the code excerpt 
were executed. (This shall be indicated by the tick marks in front of the executable statements.) Hence 
we have 100% statement coverage. The value of the variable "decision" obviously was not 0 during 
the execution in question, because the statement "a = 1;" was executed. This prevented a division by 
zero in the last line.  
However, if a value of 0 would have been used for "decision", a division by zero would have been 
occurred in the last statement. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 5/30 
 



White Paper: Code Coverage   

2.1.2 Appraisal of Statement Coverage 

As seen in the example, even if 100% statement coverage is achieved, severe bugs still can be 
present. Therefore, please keep in mind what 100% statement coverage actually means: All 
statements were executed during the tests at least one time. Not more and not less. 
We can assume, that 100% statement coverage is "better" (i.e. results in a higher software quality, 
whatever this may be) than, say 70% statement coverage, but the software quality achieved by 100% 
statement coverage is certainly not sufficient for a safety-critical project. 
If you consider to apply statement coverage, to reach 100% is the minimal objective. 
Statement coverage can be useful for detecting "dead code", i.e. code that cannot be executed at all. 
Statement coverage can reveal missing test cases. 
 
 

2.2 Branch Coverage / Decision Coverage 

The terms "branch coverage" ("Zweigüberdeckung") and "decision coverage" ("Entscheidungs-
überdeckung") denote the same measure. This measure relates to the decisions in a program, where 
program execution can take one out of two possible branches. This is equivalent to the decision 
evaluating to both true and false. 

 
Fig. 3 Branch coverage and decision coverage can be considered to be synonyms 
 
The simplest example is an if-instruction which has a "then" branch and an "else" branch. 

 
Fig. 4 A decision in an if-statement causes two branches 
 
 
The definition of decision coverage in [DO-178B] is: 

• 
• 

Every point of entry and exit in the program has been invoked at least once, and 
every decision in the program has taken on all possible outcomes at least once. 

Branch coverage is often abbreviated as C1 respectively C1, e.g. in [LIGGESMEYER], [SPILLNER] 
and [TESSY], but other nomenclature may be used also, e.g. C2 in [BEIZER]. Therefore, please use 
these identifiers with caution. 

© Copyright 2008 Hitex Development Tools GmbH Page 6/30 
 



White Paper: Code Coverage   

2.2.1 An if-Statement Has Always Two Branches 

Some people are astonished that the else-branch exists even if it is not represented in the source 
code, as shown in the example for statement coverage above (see Fig. 2 on p. 5).  
We perform the same test as described above for the code excerpt depicted in Fig. 2 on p. 5, but 
measure branch coverage / decision coverage instead of statement coverage. 

 
Fig. 5 The invisible else-branch is taken into account for branch coverage 
 
 
The figure above depicts the branch coverage result of Tessy, a tool for module/unit testing of 
embedded software. More on Tessy can be found under [TESSY]. On the left hand side of the figure 
above, the printable branch coverage result is displayed. The numbers are each related to a branch 
and indicate the number of executions of that branch. The branch with zero executions is marked by 
asterisks. The right hand side of the figure above gives the flow-chart representation of the coverage 
information. The else-branch with zero executions is in dotted format and marked in red. Executed 
branches are in green. The branch coverage for the code excerpt is 50%. 
It becomes obvious from the figure above that the "invisible" else-branch was not executed. This 
makes branch coverage a more valuable measure than statement coverage.  
In the example, it becomes obvious that at least a second test case needs to be executed to achieve 
100% branch coverage. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 7/30 
 



White Paper: Code Coverage   

2.2.2 A Pathological Situation 

In the C programming language, the decision in a switch statement selects one of several possible 
branches. This can be considered to be equivalent to a sequence of if-statements. However, 
sometimes astonishing things happen. Consider the following code snippet. 
 
   int i; 
   for (i = 0; i < 2; i++) 
   { 
      switch (i) 
      { 
         case 0: 
            a = 600; 
            break; 
         case 1: 
            a = 700; 
            break; 
       } 
   } 

Fig. 6 Can 100% branch coverage be achieved? 
 
 
Obviously, the for-loop is executed exactly two times: The first time the variable i has the value 0 and 
the code starting at the label "case 0" is executed; the second time the variable i has the value 1 and 
the code starting at the label "case 1" is executed. This should yield 100% branch coverage. But 
actually, 100% branch coverage cannot be achieved for this code snippet. The reason is the label 
"default", which is considered as an additional branch, even if it is not implemented explicitly. 
 

 
Fig. 7 The implicit default branch will never be executed 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 8/30 
 



White Paper: Code Coverage   

 
Fig. 8 Also the explicitly programmed default branch will never be executed 
 
 
This example shows that you might not be able to achieve 100% branch coverage for a reasonable 
looking piece of code. The problem can be overcome be rearranging the code, e.g. by making the 
statement "a = 700;" the default case. But this might reduce comprehensibility of the code. If 
rearrangement is not possible or not desired, you might want to state why at this specific point a 
branch cannot be executed. This is called a justification. 
 

2.2.3 Consecutive Switch Labels 

      switch (i) 
      { 
         case 0: 
         case 1: 
         case 2: 
            a = 700; 
            break; 
         default: 
            a = 800; 
            break; 
      } 

Fig. 9 Which branch coverage is achieved executing a test case where (i==1)? 
 
 
Each label in a switch statement represents a branch, because each label represents an entry point 
according to [DO-178B]. This even holds true, if this branch does not contain any statements. 
Therefore, the code snippet above consists of four branches, and not only two, as one might assume 
at a first glance. Now, if a test case where (i==1) is executed: Is the branch belonging to the label 
"case 2" considered executed (what would result in 50% branch coverage) or not (what would result in 
25% branch coverage)? 

© Copyright 2008 Hitex Development Tools GmbH Page 9/30 
 



White Paper: Code Coverage   

 

 
Fig. 10 A test case with (i==1) was executed 
 
 
The figure above depicts the branch coverage reached by executing a single test case with (i==1). 
Tessy does not consider the branch belonging to the label "case 2" as executed. Therefore, the 
branch coverage is 25%. 
If the branch belonging to the label "case 2" would be considered executed in the example above, 
100% branch coverage can be reached without executing a test case with (i==2). However, such a 
test case could reveal an error. 
 
      switch (i) 
      { 
         case 0: 
         case 1: 
         case 2: 
            a = 1/(i-2); 
            break; 
         default: 
            a = 800; 
            break; 
      } 

Fig. 11 A test case with (i==2) would reveal an error 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 10/30 
 



White Paper: Code Coverage   

2.2.4 Relation of Branch Coverage To Statement Coverage 

If you have reached 100% branch coverage, you can deduct that you have also reached 100% 
statement coverage. I.e. branch coverage "includes" statement coverage. (The technical term for this 
is "to subsume"). 
However, if you have reached a certain amount of branch coverage, you cannot deduct that you have 
the same amount of statement coverage also, as one might assume at a first glance. E.g. from 50% 
branch coverage one cannot deduct to have reached also 50% statement coverage.  
Consider the following code excerpt: 
 
 int a = 0; 
 if (decision) 
  a++; 
 else 
 { 
  a++; 
  a++; 
 } 

Fig. 12 Any single test case yields different results for branch coverage and statement coverage 
 
 
If we execute a single test case, either with (decision == 1) or with (decision == 0), we will get 50% 
branch coverage in both cases. However, it is obvious, that in the first case (decision == 1) we will get 
lower statement coverage than in the second case (decision == 0). 
 

2.2.5 Appraisal of Branch Coverage 

Branch coverage subsumes statement coverage, i.e. branch coverage is more valuable than 
statement coverage. Therefore, branch coverage should be preferred over statement coverage 
whenever it is feasible. The initial goal should be to reach 100% branch coverage. If this goal is 
achieved, 100% statement coverage is achieved also automatically.  
However, as we have seen, it is not always possible to reach 100% branch coverage. 
The shortcoming of branch coverage is that it is insensitive on the structure of a decision. This 
shortcoming is remedied by condition coverage. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 11/30 
 



White Paper: Code Coverage   

2.3 Condition Coverage 

A decision ("Entscheidung") can be made up of one or more conditions ("Bedingungen"), which are 
combined by logical (i.e. Boolean) operators (AND, OR, NOT). A condition is a Boolean expression 
containing no Boolean operator. Conditions are also called atomic decisions. 
 

 
Fig. 13 A decision can be made up of conditions 
 
 
Condition coverage measures to what extent conditions (i.e. atomic decisions) affect the outcome of a 
decision. A lot of different condition coverage measures exist. 
 

2.3.1 Complete and Incomplete Evaluation 

Decisions consisting of logical combined conditions raise the problem of complete and incomplete 
evaluation. Assume evaluation from left to right and as an example for a decision the decision 
"(A || B)". For a test case, in which A evaluates to true, it is not necessary to also evaluate B, because 
the outcome of the decision is true, regardless of the value of B.  
In some programming languages, the compiler is allowed to stop evaluating a decision as soon as the 
outcome of the decision is known. This is called incomplete evaluation. Logical operators of such 
languages are sometimes attributed as short-circuit operators.  
Languages, where the compiler is not allowed to stop evaluation, have complete evaluation. C, C++, 
and Java normally have incomplete evaluation. Pascal and Visual Basic are examples for languages 
with complete evaluation. Caution: Maybe this feature can be controlled by a compiler option. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 12/30 
 



White Paper: Code Coverage   

2.3.2 Overview of Condition Coverage Measures 

Several condition coverage ("Bedingungsüberdeckung") measures exist. We follow the nomenclature 
of [LIGGESMEYER]. 
 

2.3.2.1 Simple Condition Coverage 

Simple condition coverage ("einfache Bedingungsüberdeckung") reports, if all conditions are evaluated 
at least one time to true and one time to false. 
Simple condition coverage is called "branch condition testing" in [SPILLNER]. 
But 100% simple condition coverage does not necessarily yield 100% branch coverage. This is 
especially the case for languages with complete evaluation. To illustrate this, we use a code snippet in 
Pascal, a language featuring complete evaluation. 
 
 
 
 
  √   IF A AND B THEN 
  0        ... 
      ELSE 

√        ... 
 

  
Fig. 14 A code snippet in Pascal and the four possible test cases (complete evaluation) 
 
On the left hand side of Fig. 14, a code snippet in Pascal is depicted, where the decision (A and B) 
controls if the then-branch or the else branch is taken. On the right hand side of Fig. 14 the four (!) 
possible test cases are listed. If we execute test case 2 and test case 3, A gets both the value true (in 
test case 2) and false (in test case 3). Also B gets both the value true (in test case 2) and false (in test 
case 3). This results in 100% simple condition coverage. However, the overall outcome of the decision 
(A and B) is false both for test case 2 and for test case 3. Therefore, both test cases execute the else-
branch; the then-branch is not executed. This results in only 50% branch coverage. Hence the 
example proves that in languages with complete evaluation you cannot deduce from 100% simple 
condition coverage to have 100% branch coverage also. 
In languages with incomplete evaluation, e.g. in C, only three test cases are possible. 
 
  √  if (A && B) 
     { 
  √      ... 
     } 
     else 
     { 
  √      ...       } 
Fig. 15 A code snippet in C and the three possible test cases (incomplete evaluation) 
 
We now assume a language with incomplete evaluation like C, and assume evaluation from left to 
right. We consider the decision (A && B) from the figure above. As soon as it is known that A 
evaluates to false, it is also known that (A && B) evaluates to false also, regardless of the value of B. 
Therefore, test case 1 and test case 2 from Fig. 14 have to be combined to form test case I in the 
Fig. 15. B is not evaluated, i.e. you cannot assume a certain value for B. This is indicated by the ‘-‘ 

© Copyright 2008 Hitex Development Tools GmbH Page 13/30 
 



White Paper: Code Coverage   

sign in test case I. Test case II respectively III from Fig. 15 is identical to test case 3 respectively 4 
from Fig. 14. You need test case II and III to have true and false for B. But A is true both in test case II 
and III. Therefore, you need test case I to have false for A. All in all, you need all three test cases to 
get 100% simple condition coverage for (A && B). The three test cases execute both branches; hence 
we have 100% branch coverage. 
 

2.3.2.2 Condition / Decision Coverage 

Because 100% simple condition coverage does not yield 100% branch coverage in any case, an 
additional measure is introduced, which achieves this goal by definition. 100% condition / decision 
coverage ("Bedingungs-/Entscheidungsüberdeckung") is reached if both 100% simple condition 
coverage and 100% branch coverage is reached. 
This is only relevant for languages with complete evaluation. 

2.3.2.3 Minimal Multiple Condition Coverage 

Minimal multiple condition coverage ("Mehrfach-Bedingungsüberdeckungstest") requires that 
(1) all atomic conditions are evaluated to both true and false, and 
(2) all compound conditions are evaluated to both true and false, and 
(3) the whole decision evaluates to both true and false. 
 

 
Fig. 16 A decision can be made up of atomic and compound conditions 
 
Obviously minimal multiple condition coverage tests more intensive than simple condition coverage, 
because simple condition coverage requires only (1) of the above list. However, more test cases are 
required to reach 100% minimal multiple condition coverage than for 100% simple condition coverage. 
Minimal multiple condition coverage subsumes condition / decision coverage, because (1) of the list 
above subsumes simple condition coverage and (3) from the list above subsumes decision coverage. 
Especially with complete evaluation, minimal multiple condition coverage does not always take the 
structure of a decision into account. Languages with incomplete evaluation are better suited for 
minimal multiple condition coverage. 
Minimal multiple condition coverage is called "modified branch condition decision testing" in 
[SPILLNER]. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 14/30 
 



White Paper: Code Coverage   

2.3.2.4 Modified Condition / Decision Coverage 

One of the best known measures of condition coverage is modified condition / decision coverage 
("Modifizierte Bedingungs-/Entscheidungsüberdeckung"), often abbreviated to "MC/DC" or MCDC. 
MC/DC is defined as follows: 
Each condition (= atomic decision) of a decision requires a pair of test cases, that 
(1) differs in the Boolean value for that condition, and 
(2) has the same Boolean value for all other conditions, and 
(3) produces true and false in the outcome of the decision. 
 
The definition of MC/DC in [DO-178B] s: 

• 
• 
• 
• 
• 

Every point of entry and exit in the program has been invoked at least once, 
every condition in a decision in the program has taken all possible outcomes at least once, 
every decision in the program has taken all possible outcomes at least once, and 
each condition in a decision has been shown to independently affect that decision’s outcome. 
A condition is shown to independently affect a decisions outcome by varying just that condition 
while holding fixed all other possible conditions.  

 
MC/DC is required by [DO-178B] or software on level A of criticality. 
If the decision is made up of n conditions, a set of test cases with pairs of test cases for each condition 
consists of at least (n+1) test cases. All test cases of such a set need to be executed to achieve 100% 
MC/DC. It is possible that different sets of test cases exist, that yield 100% MC/DC when executed. 
As a first example, we consider the decision (A || B) && (C || D), for a language with complete 
evaluation. There are 16 combinations for A, B, C, and D. 
 

 
Fig. 17 The truth table and a set of pairs for 100% M/DC (complete evaluation) 
 
 
The figure above shows the pairs of test cases for each condition.  
E.g., the pair for condition D is made up by test case 9 and 10. Test case 9 and 10 build a valid pair 
because  

© Copyright 2008 Hitex Development Tools GmbH Page 15/30 
 



White Paper: Code Coverage   

(1) they differ in the value for the condition in question (D is false in test case 9 and D is true in test 
case 10); furthermore, 

(2) the value of the other three conditions (A, B, and C) are identical for both test cases; and 
(3) the overall outcome for the decision differs, i.e. ((A || B) && (C || D)) is false in test case 9 and 

true in test case 10. 
 
As a second example, we take the same decision, but with incomplete evaluation. 
 

 
Fig. 18 The truth table and a set of pairs for 100% M/DC (incomplete evaluation) 
 
 
With incomplete evaluation, the number of possible test cases is reduced. For instance, the first four 
test cases from Fig. 17 are combined to the first test case in Fig. 18. If a condition is not evaluated, 
this is indicated by the minus sign in the truth table.  
Still we need a pair of test cases for each condition. If a condition is not evaluated, it can be used as 
both true and false when building pairs. E.g. in test case IV, the value for D is not evaluated. With 
respect to D, this allows the combination of test case IV with any other test case to form a pair for one 
of the other three conditions. 
A pair of test cases for each condition is shown in Fig. 18. Actually, test case IV is used in the pair for 
B and in the pair for C. 
The set of pairs shown in the figure above is not the only set of test cases that yield 100% MC/DC. 
The figure below shows a different set of pairs. 
 

 
Fig. 19 Another set of pairs of test cases that yield 100% MC/DC for the decision 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 16/30 
 



White Paper: Code Coverage   

 
Fig. 20 Tessy determines 100% MC/DC for both sets 
 
It is practically not possible to determine manually, if a set of test cases yield 100% MC/DC. Therefore, 
appropriate tools should be used. It is a plus if such a tool determines the lacking test cases for 100% 
MC/DC, if 100% were not achieved by the already executed test cases. 
 

 
Fig. 21 Tessy shows which input combination was tested by which test case and reveals the combinations that still need to 

be exercised to get 100% MC/DC 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 17/30 
 



White Paper: Code Coverage   

2.3.2.5 Multiple Condition Coverage 

Multiple Condition Coverage (MCC, "Mehrfach-Bedingungsüberdeckung") measures, if all possible 
combinations of true and false for all conditions in a decision were tested.  
In other words, the test cases are given by the truth table of the conditions. 
MCC is called "branch condition combination testing" in [SPILLNER]. 
For a decision with n conditions, 2n test cases are required to get 100% MCC in case of complete 
evaluation. In case of complete evaluation, the 16 combinations / test cases for the decision "(A || B) 
&& (C || D)" are given by Fig. 17.  
However, as discussed above, in case of incomplete evaluation, only 7 out of the 16 combinations 
exist. These are listed in Fig. 18 resp. Fig. 19. All 7 combinations need to be tested to get 100% MCC. 
These are two combinations more than for 100% MC/DC. 
 

 
Fig. 22 Tessy marks which input combinations were already tested and indicates the combinations that still need to be 

exercised to get 100% MCC 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 18/30 
 



White Paper: Code Coverage   

2.3.3 More Examples of Condition Coverage 

2.3.3.1 Order Matters! 

Sometimes it is important how a decision is written. Below are two decisions that are logically 
equivalent, but differ in the order of the conditions. 
 

D1 D2 

((a==4) || (a==5)) && b b && ((a==4) || (a==5)) 

Fig. 23 What is the difference between these two decisions with respect to code coverage? 
 

D1 D2 

Fig. 24 All values for input combinations 
 
Regarding D1: 

• 

• 

• 

• 

Input combination 7 and 8 are both logically not possible, because both A and B can not be true at 
the same time. 
Due to incomplete evaluation, input combination 1 and 2 can be combined, because if A is false 
and if B is also false, the outcome of the decision is false, regardless of the value of C. 
Due to incomplete evaluation, in input combination 5 and 6, B is not evaluated, because A is true 
for both input combinations, and therefore (A || B) is true, regardless of the value of B. 
The remaining 5 actually possible input combinations are shown in the Fig. 25 (left hand side). 

 
Regarding D2: 

• 

• 

• 

• 

Input combination 4 and 8 are both logically not possible, because both A and B can not be true at 
the same time. 
Due to incomplete evaluation, input combination 1 to 4 (respectively 1 to 3) can be combined, 
because if C is false, the outcome of the decision is false, regardless of the values of A and B. 
Due to incomplete evaluation, in input combination 7, B is not evaluated, because A is true, and 
therefore (A || B) is true, regardless of the value of B. 
Only 4 input combinations are possible! The remaining input combinations are shown in Fig. 25 
(right hand side). 

© Copyright 2008 Hitex Development Tools GmbH Page 19/30 
 



White Paper: Code Coverage   

D1 D2 

Fig. 25 The actually possible input combinations 
 
 
Considering MC/DC 
Both decisions consist of three atomic conditions (A, B, and C). Therefore, a set of test cases from 
which the necessary pairs for MC/DC can be built, consists of 4 test cases. 
For D1, even two sets can be built. For D2, the (one and only) set is made up of all the four actually 
possible test cases. 
 

D1 D2 

Set 1:   A: I + V Set 1:   A: I + III   or   I + IV 

  B: I + III   B: II + IV 

  C: IV + V   C: II + III 

Set 2:   A: I + V  
  B: I + III 

 
 

 C: II + III 

Fig. 26 The pairs of test cases for each condition 
 
For D2, two different pairs are possible for A. But regardless which pair is used, all four possible test 
cases are needed for the set. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 20/30 
 



White Paper: Code Coverage   

D1 D2 

Set 1: Set 1: 

Set 2: 

Fig. 27 The test cases needed for 100% MC/DC 
 
 
Considering MCC 
To achieve 100% MCC, all actually possible test cases must be executed. Hence, D1 requires 5 test 
case executions, whereas D2 requires only 4 test cases (because there are only 4 actually possible 
test cases). 
 

D1 D2 

Fig. 28 Different number of test cases needed for 100% MCC 
 

© Copyright 2008 Hitex Development Tools GmbH Page 21/30 
 



White Paper: Code Coverage   

The figure above shows that 4 test cases are not enough to reach 100% MCC for D1; and 3 test cases 
are not enough to reach 100% MCC for D2. The test case needed in addition to reach 100% for D1 
respectively D2 is marked in red. 
 
Conclusion 
The example at hand shows how the order in which a decision is written affects the number of actually 
possible test cases, what in turn not only influences MC/DC and MCC, but also the (average) 
execution speed. If one assumes equal distribution of the input values, the compiler needs to evaluate 
fewer conditions for D2 compared to D1. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 22/30 
 



White Paper: Code Coverage   

2.3.3.2 Style Matters! 

Sometimes it is important how a decision is programmed, e.g. how many instructions are used. Below 
are two code snippets that are functionally equivalent, but differ in the programming style. 
 

S1 S2 
  
 if ((A || B) && (C || D))  if (A) 
    r = 1;     if (C) 
 else        r = 1; 
    r = 0;     else if (D) 

       r = 1; 
    else 
       r = 0; 
 else if (B) 
    if (C) 
       r = 1; 
    else if (D) 
       r = 1; 
     else 
       r = 0; 
 else 
    r = 0; 

Fig. 29 What is the difference between these two code snippets with respect to code coverage? 
 
S2 resembles the implementation of the decision ((A || B) && (C || D) in most assembler languages 
and hence also in the binary object format. (It goes without saying that some braces could be added to 
S2 to improve understandability.) 
However, for all possible input combinations, S1 and S2 assign the same value to r, i.e. the code 
snippets are functionally equivalent. 
We know from above, that in case of incomplete evaluation, only 7 test cases are possible. For your 
convenience, these are again depicted in the following figure: 
 

 
Fig. 30 The 7 actually possible test cases for ((A || B) && (C || D)) 
 

Fig. 30By exercising only two of the test cases from , we get 100% branch coverage. We need a pair 
of test cases with different outcome for the whole decision, e.g. test case II and III. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 23/30 
 



White Paper: Code Coverage   

 
Fig. 31 Test cases II and III result in 100% branch coverage for S1 
 
However, the two test cases neither do reach 100% MC/DC nor 100% MCC. According to the 
discussions above, at least 5 test cases are needed for 100% MC/DC, because S1 consists of 4 
(atomic) conditions. To reach 100% MCC, all 7 possible test cases need to be executed. 
 
To reach 100% branch coverage for S2, it turns out that all 7 test cases need to be executed. The pair 
above (II + III), which results in 100% branch coverage for S1, does only result in 41% branch 
coverage for S2. 
 

 
Fig. 32 Test cases II and III do not result in 100% branch coverage for S2 
 
Since the decision in each if-instruction is an atomic condition, if 100% branch coverage is reached for 
S2, also 100% MC/DC coverage and also 100% MCC coverage is reached. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 24/30 
 



White Paper: Code Coverage   

 
Fig. 33 Even six test cases do not result in 100% branch coverage for S2 
 
Conclusion 
• 

• 

The way a decision is programmed is relevant for the effort to reach a certain percentage of a 
certain coverage measure. 
The example at hand points to a method (i.e. a programming style) in which MC/DC respectively 
MCC is subsumed by branch coverage. This may be useful if it is not possible to determine MC/DC 
respectively MCC, e.g. due to missing tools. 

 

2.3.4 Appraisal of Condition Coverage 

Especially if the test object contains a lot of decisions, and if the decisions are made up of conditions, 
condition coverage is more valuable than e.g. branch coverage. This is accomplished by a greater 
number of tests cases than for branch coverage. The increased amount of test cases naturally results 
both in higher testing intenseness and in higher testing effort. Sometimes it may be impossible to 
actually execute all required test cases for a decision, due to the logic of the program (especially for 
MCC). 
Simple condition coverage and minimal multiple condition coverage should only be used if incomplete 
evaluation is given.  
MCC requires more test cases than MC/DC and is seldom used in practice. 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 25/30 
 



White Paper: Code Coverage   

2.4 Path Coverage 

A path is a sequence of branches taken during execution of a test case for the test object. Path 
coverage ("Pfadüberdeckung") measures how many of the possible paths are executed during the 
tests. 
The number of paths grows exponentially with the number of branches. Furthermore, normally not all 
paths can be executed due to the logic of the program.  
Especially when loops are involved, normally a very large number of possible paths exist. The problem 
stems from the potentially "infinite" number of loop executions, e.g. the loop "(for i=0; i < n; i++)" will be 
executed n times, and n could be a 32 bit integer variable or even bigger. Therefore, it is practically 
impossible to achieve 100% path coverage. To cope with loops measures were introduced that 
classify the paths through a loop by the number of loop executions. Such a measure is boundary 
interior coverage. 
 

2.4.1 Boundary Interior Coverage 

Boundary interior coverage ("Grenze-Inneres-Überdeckung") classifies paths through a loop by the 
number of loop executions. Normally, three classes are defined: 
(1) A class for all paths that do not execute the loop. 
(2) A class for all paths that execute the loop exactly once. 
(3) A class for paths that execute the loop at least two times. 
 
It should be clear, that for a do-while-loop, the class according to (1) is empty. Variations of this 
definition exist. The effort to reach 100% boundary interior coverage is high in every case. 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 26/30 
 



White Paper: Code Coverage   

3 The Value of Code Coverage 

3.1 Essential Step / Reveals Untested Code 

It is an essential step in the testing process to determine the code coverage that was reached during 
testing. Code coverage measurement is important with respect to software quality, because it would 
reveal if e.g. a part of the code was never executed during testing. This would be a hint for "dead 
code" or insufficient test cases. 
The value of code coverage may be increased if not only the reached percentage is considered, but 
also single test cases are investigated. Did the test case execute the expected path? 
 

3.2 Can Indicate Project Progress 

If the total coverage of a project is monitored over time, this can be an indication for the progress of 
the project.  
For instance:  
(1) If the percentage of the total coverage grows, this could mean testing is catching up.  
(2) If the percentage of the total coverage is getting smaller, this could mean new code is added 

without testing it appropriately. 
However, this discussion is beyond the topic of the paper at hand. 

© Copyright 2008 Hitex Development Tools GmbH Page 27/30 
 



White Paper: Code Coverage   

3.3 Two Weaknesses of Code Coverage 

However, even if you have reached the desired percentage, you must keep two weaknesses of code 
coverage in mind: 
(1) Code coverage measurement cannot detect omissions, e.g. missing or incomplete code. 
(2) Code coverage measurement is insensitive to calculations. 
 

3.3.1 Cannot Detect Omissions 

For instance, the specification for a function could state:  
"The maximum input value the algorithm can handle is 500. If the input value is greater than 500, it 
shall be set to 500."  
If the implementation of the function misses to check the input value, and therefore also misses to take 
an appropriate action if the value is greater 500, code coverage measurement will not detect the 
missing check, even if a test case with the input value 501 is executed. 
 

3.3.2 Insensitive to Calculations 

Consider the following function. 
 
long double sin(long double x_deg) 
{ 
 int i; 
 long double temp, x_rad; 
 int sign = -1; 
 
 x_rad = x_deg / 180 * pi ; 
 temp = x_rad; 
 
 for(i=3; i<=(MAX_FAC-2); i+=2) 
 { 
  temp += sign * pot(x_rad,i) / fac(i); 
  sign *= -1;  
 }  
 return(temp); 
} 

Fig. 34 A function that calculates the sinus value of its input 
 
 
A single test case with the input x_deg == 0 (i.e. an angle of zero degrees) returns 0, what is the 
correct and expected result. Code coverage measurement of this single test case yields 100% branch 
coverage, 100% MC/DC, and 100% MCC. Although you have reached 100% coverage for all 
measures, you have no evidence that the sinus calculation is correct. (A completely different function 
could be implemented, e.g. signum(). It would also return 0 for an input of 0).  
This is an example where 100% code coverage is not enough. 
 
 

© Copyright 2008 Hitex Development Tools GmbH Page 28/30 
 



White Paper: Code Coverage   

4 Recommendations 

4.1 Should Be Reached by Functional Test Cases 

However, code coverage can be reached by inappropriate means. E.g., test cases can be derived 
from the structure of the code, hereby inappropriately assuming the code is correct. Furthermore, code 
coverage could be achieved by simple executing test cases with randomly generated test data until 
the desired code coverage is reached. This approach becomes worse if the actual results of the test 
cases are not evaluated against expected results. 
Therefore, it is important to specify the test cases from a functional point of view (i.e. from the 
specification). The actual result of the test cases have to be compared with the expected results, to 
create the "pass/failed" verdict of the test. A functional test takes the test object as a black box, i.e. the 
structure of the test object is not considered. (A recommended method for the specification of 
functional test cases is the Classification Tree Method. See [TESSY]).  
Therefore, the functional test cases should be specified prior to the measurement of the code 
coverage. After all functional tests have passed (i.e. yielded the expected result), code coverage 
should be determined. If you did not reach the required percentage, you should determine the reason. 
Maybe you have to change your test cases or you have to add some new. Maybe you have found 
unreachable code and need to do a justification. 
 

4.2 Should Be Done During Module/Unit Testing 

Unit/module testing is a good phase in the testing process to determine the coverage. During 
unit/module testing, more input combinations are feasible than e.g. during system testing. You may be 
able to provoke and check some error conditions which you are unable to provoke during system 
testing (e.g. due to defensive programming). Unit/module testing tools like Tessy allow to determine 
several code coverage measures without added effort. 
 

4.3 Select the Right Measure 

The code coverage measures to use and the percentage to achieve might be predetermined, e.g. by a 
customer or by a certification authority. 
If this is not the case, spend some time to select the code coverage measure that is appropriate for the 
code of your project. This may be based on the criticality of the code, or the complexity of the code, or 
the frequency of usage of the code. Not every piece of code must be covered by the same level. E.g. 
the software monitoring a safety-critical system should be tested more rigorously by trying to achieve a 
certain percentage of MC/DC than the monitored code, where branch coverage may be sufficient. 
Try to get the right relationship between effort for reaching a certain percentage of the desired code 
coverage measure and the information you get out of it. For instance, it is generally not a good 
practice to reach 100% MC/DC coverage for a whole project with a huge effort, and neglecting other 
types/approaches towards software quality (e.g. static analysis, reviews) completely. 
 

© Copyright 2008 Hitex Development Tools GmbH Page 29/30 
 



White Paper: Code Coverage   

5 Conclusion 
• 
• 

Be aware of the confusing nomenclature. 
Don’t rate the quality of your code too high if you have reached 100%. 

 
 

6 The Author 
Frank Büchner holds a degree in computer science from the University Karlsruhe (TH) in Germany. 
Since several years he attends to testing and software quality. He can be reached by e-mail: 
frank.buechner@hitex.de. 
 
 

7 Literature 
[TESSY] http://www.hitex.de/perm/tessy.htm: More about Tessy and the Classification Tree 

Method. 
[SPILLNER] Spillner, A., Linz, T.: Basiswissen Softwaretest, Heidelberg, 2003. dpunkt-Verlag. 
[LIGGESMEYER] Liggesmeyer, Peter: Software-Qualität: Testen, Analysieren und Verifizieren von 

Software. Heidelberg, Berlin, 2002. Spektrum Akademischer Verlag. 
[THALLER] Thaller, Georg Erwin.: Softwaretest: Verifikation und Validation, Hannover, 2000. 

Heise-Verlag. 
[DO-178B] Software Considerations In Airborne Systems And Equipment Certification, RTCA, 

1992. 
[BEIZER] Beizer, Boris: Software Testing Techniques, 2nd edition, New York, 1990. 
[IEC 61508] Functional safety of electrical/electronic/programmable electronic safety-related 

systems, IEC, www.iec.ch. 
 

   
 

 
 

© Copyright 2008 Hitex Development Tools GmbH Page 30/30 
 

mailto:frank.buechner@hitex.de
http://www.hitex.de/perm/tessy.htm
http://www.iec.ch/

	Contents 
	  Introduction 
	  Motivation 
	  Confusing Nomenclature 
	  Complex Measures 
	  The Hunt for a Percentage 

	  Objective of this Paper 
	  Code Coverage Measures 
	  Statement Coverage 
	  Statement Coverage Example 
	  Appraisal of Statement Coverage 

	  Branch Coverage / Decision Coverage 
	  An if-Statement Has Always Two Branches 
	  A Pathological Situation 
	  Consecutive Switch Labels 
	  Relation of Branch Coverage To Statement Coverage 
	  Appraisal of Branch Coverage 

	  Condition Coverage 
	  Complete and Incomplete Evaluation 
	  Overview of Condition Coverage Measures 
	  Simple Condition Coverage 
	  Condition / Decision Coverage 
	  Minimal Multiple Condition Coverage 
	  Modified Condition / Decision Coverage 
	  Multiple Condition Coverage 

	  More Examples of Condition Coverage 
	  Order Matters! 
	  Style Matters! 

	  Appraisal of Condition Coverage 

	  Path Coverage 
	  Boundary Interior Coverage 


	  The Value of Code Coverage 
	  Essential Step / Reveals Untested Code 
	  Can Indicate Project Progress 
	  Two Weaknesses of Code Coverage 
	  Cannot Detect Omissions 
	  Insensitive to Calculations 


	  Recommendations 
	  Should Be Reached by Functional Test Cases 
	  Should Be Done During Module/Unit Testing 
	  Select the Right Measure 

	  Conclusion 
	  The Author 
	  Literature 


