
Recent Trends in Semantic SOA

By DMITRI ILKAEV

1.0 Introduction to Semantic Interoperability

The Semantic Web is an evolving extension of the World Wide Web in which

web content can be expressed not only in natural language, but also in a form that can be

understood, interpreted and used by software agents, thus permitting them to find, share

and integrate information more easily [1]. At its core, the semantic web comprises a

philosophy, a set of design principles,

collaborative working groups, and a variety of

enabling technologies. Some elements of the semantic web are expressed as prospective

future possibilities that have yet to be implemented or realized.

Other elements of the

semantic web are expressed in formal specifications.

Some of these include Resource

Description Framework (RDF), a variety of data interchange formats (e.g RDF/XML,

N3, Turtle, N-Triples), and notations such as RDF Schema (RDFS) and the Web

Ontology Language (OWL).

Figure 1. Semantic Web Enabling Standards

All of which are intended to formally describe concepts, terms, and relationships

within a given knowledge domain.

Semantic interoperability indicates the meaning of data can be comprehended

unambiguously by both humans and computer programs, and that information can be

processed in a meaningful way. Semantic integration is the means to achieve semantic

interoperability and can be considered as a subset of information integration, which

includes data access, aggregation, correlation, and transformation.

In a Service-Oriented Architecture (SOA), semantic interoperability ensures that service

consumers and providers exchange data in a consistent, flexible way that fulfills non-

functional requirements (NFRs) such as performance and scalability, regardless of the

diverse information involved. For example, a service requestor from a billing application

needs the customer balance, which is called "BALANCE". Meanwhile, a service provider

from an accounting application supplies customer balance, which is called

"REMAINDER". Achieving semantic interoperability is to map "BALANCE" in the

billing application to "REMAINDER" in the accounting application.

Semantic interoperability is an important architectural quality in a SOA because it

enables service consumers and providers to exchange information that make sense, and

which then can be acted upon. It is the foundation of a SOA. Without semantics, data is

just strings of binary without any meaning. Without semantic interoperability, service

consumers and providers could misinterpret and corrupt data, and ultimately bring

undesirable effects to a SOA and the business.

In a broader sense, most information integration deals with semantic

interoperability. The problem is that people take semantic interoperability for granted and

seldom make conscious and informed architectural decisions on it because the semantic

interpretation, mapping and transformation are so ingrained with home-grown

applications, Enterprise Application Integration (EAI) and Enterprise Information

Integration (EII). Therefore, it is commonly overlooked in the development of SOA.

Patterns of semantic interoperability

There are many patterns for achieving semantic interoperability in a SOA. They

can be roughly classified by the following [2]:

Pattern One: Point-to-point semantic integration

In this pattern, each data source has its own proprietary semantic meaning, and

semantic translation is performed in a point-to-point manner. For example, when two data

sources, A and B, need to be integrated, group A and group B print out their own ER

diagrams, walk through the meaning of data elements, then perform direct mapping from

data source A to B. Using the previous example, "BALANCE" column in a billing

application is directly mapped to "REMAINDER" column in an accounting application.

If data definition in one data source is changed, the impact to other systems is multiplied

and often unpredictable. It does not matter how advanced the technology is that one

picks, this semantic integration pattern is messy and a maintenance nightmare when data

sources grow. Moreover, it does not easily lead to IT asset reuse. Many ESB and EII

projects still perform point-to-point semantic integration in SOA. However, point-to-

point integration is not necessarily a bad thing. It can be used selectively to ensure high

performance and create a "fast path".

Pattern two: Hub-and-spoke semantic integration

Each system has its own proprietary semantic meaning, but is mapped to a logical

data model which can be instantiated as a physical federated model or a canonical

message model. Semantic interoperability is achieved within an enterprise via a hub-and-

spoke topology, which reduces the redundancy and maintenance cost of point-to-point

integration. Well-architected ESBs frequently use this pattern to map messages to a

canonical message model and achieve semantic interoperability.

Pattern three: Master data management (MDM) pattern

MDM emerges as a pattern of semantic interoperability responding to data silos

produced by departmental solutions. Today, many versions of truth exist in a typical

enterprise information management system. A MDM system connects heterogeneous

information sources and produces a single version of truth on key information such as

customers or products for Online Transaction Processing (OLTP) and Operational Data

Store (ODS) systems. The key information could be either a data instance, such as a

particular customer, or metadata, such as specifications of products. A MDM system

liberates data from individual business applications, package vendors and is based on

open standards. As a result, data is truly treated and reused as a corporate asset. It is often

built separately from existing systems to reduce the drastic impact to businesses, but

legacy systems might eventually migrate to MDM systems overtime. MDM stands up as

a distinct pattern from the previous two because MDM holds the single version of truth

and effectively integrates various information systems from both logical and physical

aspects. With MDM systems, companies gain many proven benefits, such as improved

customer relationships, reduced time to introduce new products to market, data integrated

with legacy systems and enabling asset reuse.

Pattern four: Industry information model

In order to encourage interoperability within an industry, vertical industry

standardization groups develop industry-specific information models, which often

include XML messages and message schema, also known as Domain Information Models

(DIMs), although some groups produce relational data models as well. DIMs are typically

XML-based and used to exchange messages in a business-to-business (B2B)

environment. The members of industry standard groups agree to follow the

specifications, and they are often required to certify for compliance. For instance, the

Association of Retail Technology Standards (ARTS) is used for the retail industry, and

the Agency Company Organization for Research and Development (ACORD) for the

insurance industry. DIMs prompt a greater level of semantic interoperability, encourage

asset reuse and level the playing field so members can spend less time, cost and energy to

solve semantic interoperability issues. Some organizations even adopt the industry

standard models as their internal enterprise logical models and canonical message

models.

Standards organizations tend to look at information from horizontal and cross-

industry perspectives. For example, the Open Applications Group (OAGi) is an open

standards group building process-based XML standards for both B2B and Application-to-

Application (A2A) integration, and it focuses on improving the state of application

integration. Another example is RosettaNet, which helps companies from multiple

industries meet the demands and challenges of today's global supply chain. Included are

the RosettaNet Business Dictionaries and the RosettaNet Technical Dictionaries.

Pattern five: The Semantic Web

The Semantic Web cuts across the boundaries of applications, enterprises and

industries. The Semantic Web links and relates elements of the data model to a common

ontology. It uses the Resource Description Framework and the Web Ontology Language

to allow data to be shared and reused on the Web.

2.0 Reference Model for Semantic Services Oriented
Architecture [3]

Service Oriented Architectures represent a huge step towards providing simpler,

more dynamic and cheaper integration solutions. By having services to encapsulate

discrete piece of functionality that can be later discovered and consumed is without a

doubt the critical step in moving from a patchwork of legacy products, monolithic off-

shelf applications and proprietary integration to a strongly decoupled, robust yet flexible

software architecture.

But SOA cannot (and it is not meant to) solve all the heterogeneity problems

inherent to enterprise integration tasks. Such heterogeneity problems could be induced for

example by the services (the key players of SOA) themselves or by the environment the

enterprises are acting in. In the former case it is natural that services deployed by

different providers to have specific requirements regarding data formats or

communication protocols. Furthermore, the invocation of such services can be part of

complex business process that most probably differs from one vendor to another.

Regarding the second case, the World Wide Web proves to be a more and more appealing

(and suited) environment for businesses and Web Services could successfully fulfill the

roll of services in SOA. Such a context allows for ad-hoc cooperation and on-the-fly

business provision, but also pushes the interoperability problems to extreme, beyond the

boundaries of the enterprises to be integrated.

Semantics is coming to offer the tools to enable scalable, efficient and cost-

effective solutions to these problems. Using ontologies and semantics, services can be

unambiguously described, from data, functionality and behavior point of view. These

semantics descriptions can be used in operations like discovery, selection, composition or

aggregation of services to provide meaningful functionality through a truly Service

Oriented Architecture. SOA can provide domain independent solutions for these

operations that highly rely on semantics, formal specifications and reasoning.

It is important to note that providing semantics descriptions for SOA is not a trivial task

and involves significant efforts: additionally to the actual implementation and technical

interfaces an extra layer, the semantic layer, has to be added by each of the service

providers. Only after this extra step is accomplished the real benefits of semantics can be

exploited: old hard-coded, domain-specific solutions for service operations can be

replaced by general, semantic-based ones and used in inter-enterprise (or even intra-

enterprise) business scenarios.

As such, bringing semantics to SOA means adding semantics to the services part

of SOA and then augmenting SOA with semantic-aware mechanisms to support the

elementary operations on services (e.g. discovery, selection, composition, invocation etc).

The basis of the Semantic SOA Reference Model is illustrated in Figure , see more details

in [3].

Figure 2. Reference Model as UML Class Diagram

We do not plan to provide a comprehensive analysis of the model, it’s done in

OASIS documentation, we should note that some basic understanding of the SOA RM

(Reference Model) [4] will be helpful for the model review. Below we present the short

description of the new notations that the reader may not be familiar with:

Web Service

This is comparable with the notion of service in the SOA-RM, but necessarily describes a

service which is capable of programmatic invocation and access.

Goal

A major difference between SOA-RM and the Semantic SOA Reference Model it that we

explicitly model the intentions of the client to each service. This is represented

ontologically as a Goal.

Mediator

The Semantic SOA Reference Model will adopt the principle that any connection made

between two elements in the model should be represented by a Mediator. These allow

the specification of several types of mediation, which is to say bridging the gap between

heterogeneous descriptions and/or expectations.

WG-Mediator

An important class of Mediator used in the Semantic SOA Reference Architecture is

named WG-Mediator since it describes the mediation between goals and web services

(and vice versa).

Capability

A capability is used both in the description of Goals and Web Services to semantically

describe both the requirements for, and the results of, successful interaction from a global

point of view. This is specified using logical expressions in the ontology language and

consists in four parts, as follow: Precondition, Assumption, Postcondition, Effect.

Behavioral model

The behavior model deals with “knowledge of the actions invoked against the service and

the process or temporal aspects of interacting with the service”. It consists of two

distinct aspects: the action model and the process model. The first one deals with the

characterization of actions that can be invoked against the service, while the second deals

with the temporal relationships of actions and events associated when interacting with a

service. The action model is explicitly modeled in semantic terms in the Semantic SOA

Reference Model, which are grounded.

The process model is captured by the interface of a service described in the Semantic

SOA Reference Model, in particular in the choreography. It describes in details the order

in which interactions can be engaged in the form of a stateful conversation.

Semantic SOA Reference Model as extension to SOA-RM

Additional to the classical Web services of WSDL description and SOAP-based

invocations, the Semantic SOA Reference Model provides an extra layer: the semantic

description of Web services. In this section we intend to show that exactly these semantic

descriptions layered on top of a proper service execution environment, enable what we

are calling the new generation of semantics-enabled SOA architecture, in compliance

with the OASIS SOA-RM standard specifications.

SOA-RM identifies four main aspects regarding the service that have to be considered in

SOA:

• Enable access to one or more capabilities. In WSMO and SEE services are seen

as well as computational entities that enable a requester to gain access and to

consume certain functionality. WSMO prescribes that a service should have only

one capability – a stronger condition that the one imposed by the SOA-RM.

• Access through a prescribed interface. The Semantic SOA Reference Model

makes a clear distinction between interface and the capability on one hand, and

between the interface and the implementation of the service on the other hand. A

service interface must contain all the necessary information one needs to

access/invoke the service.

• Opaque to the service consumer except from the information and behavioral

models in the interface and the information required to asses if a service suits the

requester needs. In the Semantic SOA Reference Model the above mentioned

two-sided separations fully match this requirement. The separation between the

implementation and the interface assures that none of the private business logics

or the internal computational/technical details are revealed. By the separation

between the interface and the capability, the Semantic SOA Reference Model

makes sure that it is clearly stated what information needs to be used when

finding the suited service (i.e. during the discovery service) and what information

is needed after discovery when the service needs to be invoked. In WSMO the

interfaces and the capability are semantically described (this description might

include also the grounding to the actual implementation of the service, e.g. the

WSDL web service).

• Consequences of invoking a service should be either response information to the

invocation or a change to the shared state of the defined interface. The Semantic

SOA Reference Model goes one step further and as part of the capability, it

formally describes the conditions to hold on the outputs after the invocation of the

service (i.e. conditions) as well as the changes on the outside world (i.e. effects).

The Semantic SOA Reference Architecture defines the functionality (during the

discovery phase) to check if the post-conditions and the effects match the

requester needs.

It is important to note that because the Semantic SOA Reference Architecture defines

operations on services described using the Semantic SOA Reference Model these

requirements are wholly fulfilled. Furthermore, by use of semantics, explicit information

about service’s interface and capability is given; the semantic descriptions offer a

significant advantage on the WSDL description (or on the service descriptions in an

UDDI repository) which are in general less expressive and in most of the cases rather

ambiguous.

3.0 Semantic Web Service Frameworks

Three main approaches have been driving the development of Semantic Web

Service Frameworks [5]: IRS-II, OWL-S and WSMF. IRS-II (Internet Reasoning

Service) is a knowledge-based approach to SWS, which evolved from research on

reusable knowledge components. OWL-S is an agent-oriented approach to SWS,

providing fundamentally an ontology for describing Web service capabilities. WSMF

(Web Service modeling framework) is a business-oriented approach to SWS, focusing

on a set of e-commerce requirements for Web Services including trust and security. We

will be focusing on the last 2 approaches as those which are getting most of the

recognition and momentum in the industry.

OWL-S

OWL-S (previously DAML-S) [6] consists of a set of ontologies designed for describing

and reasoning over service descriptions. OWL-S approach originated from an AI

background and has previously been used to describe agent functionality within several

Multi-Agent Systems as well as with a variety of planners to solve higher level

goals.

OWL-S combines the expressivity of description logics (in this case OWL) and the

pragmatism found in the emerging Web Services Standards, to describe services that

can be expressed semantically, and yet grounded within a well defined data typing

formalism. It consists of three main upper ontologies: the Profile, Process Model and

Grounding.

Figure 3. Top Level of the Service Ontology

The Profile is used to describe services for the purposes of discovery; service

descriptions (and queries) are constructed from a description of functional properties

(i.e. inputs, outputs, preconditions, and effects - IOPEs), and non-functional

properties (human oriented properties such as service name, etc, and parameters for

defining additional meta data about the service itself, such as concept type or quality

of service). In addition, the profile class can be subclassed and specialized, thus

supporting the creation of profile taxonomies which subsequently describe different

classes of services.

Figure 4. Selected classes and properties of the Profile

OWL-S process models describe the composition or orchestration of one or more

services in terms of their constituent processes. This is used both for reasoning about

possible compositions (such as validating a possible composition, determining if a

model is executable given a specific context, etc) and controlling the enactment/

invocation of a service.

Figure 5. Top Level of the Process Ontology

Three process classes have been defined: the composite, simple and atomic process. The

atomic process is a single, black-box process description with exposed IOPEs. Inputs and

outputs relate to data channels, where data flows between processes. Preconditions

specify facts of the world that must be asserted in order for an agent to execute a service.

Effects characterize facts that become asserted given a successful execution of the

service, such as the physical side-effects that the execution the service has on the physical

world. Simple processes provide a means of describing service or process abstractions –

such elements have no specific binding to a physical service, and thus have to be realized

by an atomic process (e.g. through service discovery and dynamic binding at run-time),

or expanded into a composite process. Composite processes are hierarchically defined

workflows, consisting of atomic, simple and other composite processes. These process

workflows are constructed using a number of different composition constructs, including:

Sequence, Unordered, Choice, If-then-else, Iterate, Repeat-until, Repeat-while, Split, and

Split + join.

The profile and process models provide semantic frameworks whereby services

can be discovered and invoked, based upon conceptual descriptions defined within

Semantic Web (i.e. OWL) ontologies. The grounding provides a pragmatic binding

between this concept space and the physical data/machine/port space, thus facilitating

service execution. The process model is mapped to a WSDL description of the service,

through a thin grounding. Each atomic process is mapped to a WSDL operation,

and the OWL-S properties used to represent inputs and outputs are grounded in terms

of XML data types.

Figure 6. Mapping between OWL-S and WSDL

Additional properties pertaining to the binding of the service are

also provided (i.e. the IP address of the machine hosting the service, and the ports

used to expose the service).

WSMF

The Web Service Modeling Framework (WSMF) provides a model for describing the

various aspects related to Web services. Its main goal is to fully enable ecommerce by

applying Semantic Web technology to Web services. WSMF is the product of research on

modeling of reusable knowledge components. WSMF is centered on two complementary

principles: a strong de-coupling of the various components that realize an e-commerce

application; and a strong mediation service enabling Web services to communicate in a

scalable manner. Mediation is applied at several levels: mediation of data structures;

mediation of business logics; mediation of message exchange protocols; and mediation of

dynamic service invocation. WSMF consists of four main elements: ontologies that

provide the terminology used by other elements; goal repositories that define the

problems that should be solved by Web services; Web services descriptions that define

various aspects of a Web service; and mediators which bypass interoperability problems.

WSMF implementation has been assigned to two main projects: Semantic Web enabled

Web Services (SWWS) [7] and WSMO (Web Service Modeling Ontology) [8]. SWWS

will provide a description framework, a discovery framework and a mediation platform

for Web Services, according to a conceptual architecture. WSMO will refine WSMF and

develop a formal service ontology and language for SWS. WSMO service ontology

includes definitions for goals, mediators and web services. A web service consists of a

capability and an interface. The underlying representation language for WSMO is F-

logic. The rationale for the choice of F-logic is that it is a full first order logic language

that provides second order syntax while staying in the first order logic semantics, and has

a minimal model semantics. The main characterizing feature of the WSMO architecture

is that the goal, web service and ontology components are linked by four types of

mediators as follows:

• OO mediators link ontologies to ontologies,

• WW mediators link web services to web services,

• WG mediators link web services to goals, and finally,

• GG mediators link goals to goals.

Since within WSMO all interoperability aspects are concentrated in mediators the

provision of different classes of mediators based on the types of components connected

facilitates a clean separation of the different mediation functionalities required

when creating WSMO based applications.

WSMX (Web Service Modeling eXecution environment) [9] is the reference

implementation of WSMO (Web Service Modeling Ontology). It is an execution

environment for business application integration where enhanced web services are

integrated for various business applications. The aim is to increase business processes

automation in a very flexible manner while providing scalable integration solutions.

WSMX internal language is WSML (Web Service Modeling Language). WSMX

interprets service requester’s goal to:

– discover matching services

– select (if desired) the service that best fits

– provide data mediation (if required)

– make the service invocation

WSMX usage scenario [10] is presented at the Figure 7 below and the overall WSMX

bases components and system architecture is shown on the next picture.

Figure 7. WSMX Usage Example

Figure 8. WSMX Components and System Architecture

The Table 1 [5] and Table 2 [10] show comparison between OWL-S and WSMO/WSMF

approaches and see [5] for more details on this comparison.

Table 1. Components of different SWS approaches

Table 2. Comparison between OWL-S and WSMO

The main contribution of the OWL-S approach is its service ontology, which

builds on the Semantic Web stack of standards. OWL-S models capabilities required for

Web services to the extent of grounding, which maps to WSDL descriptions.

Additionally, the DAML (DARPA Agent Markup Language) consortium has put a lot of

effort in representing the interactions among Web Services through the process model of

the OWL-S service ontology. Since the OWL-S service ontology is public and does not

prescribe a framework implementation it has been used as the starting point of individual

efforts towards SWS. Nevertheless, the DAML consortium has implemented some

components of an architecture based on the DAML inference engine. The

invocation activity of OWL-S involves a decomposition of the process model and

discovery activity relies on the extension of UDDI registry.

The WSMF approach, although delivering a conceptual framework, invested

considerable effort in bringing business requirements into account when proposing a

conceptual architecture. Some of the outcomes are still in the form of more detailed

specifications. In particular, a service registry has been proposed for which a high level

query language is defined according to the service ontology. WSMO distinguished

characteristic is the inclusion of mediators in the ontology specification.

In common with IRS-II, the WSMF approach builds on the UPML (Unified Problem

Solving Method Development Language) framework, taking advantage of the separation

of tasks (goals) specifications from the service specifications.

4.0 Conclusion

The state of the art of Semantic Web Services shows that technologies will shape towards

accepted enabling standards for Web Services and the Semantic Web. In particular, IRS-

II, OWL-S and WSMF promise inter-compatibility in terms of OWL-based service

descriptions and WSDL-based grounding [5]. However, an assessment of the delivered

results of IRS-II, OWL-S and WSMF approaches show that Semantic Web Services are

far from mature. While they represent different development approaches converging to

the same objective, they provide different reasoning support, which are based on different

logic and ontology frameworks. Furthermore, they emphasize different ontology-based

service capabilities and activities according to the orientation of their approaches. While

Semantic Web technology positioned well to do the markup and reasoning of Web

service capabilities, none of the approaches described provide a complete solution

according to the dimensions illustrated, but they show complementary strengths which

will continue to grow and merge while Semantic SOA concept and its technical support

will continue to mature.

References

1. http://en.wikipedia.org/wiki/Semantic_Web

2. Mei Y. Selvage Dan Wolfson Bob Zurek Ed Kahan Achieve semantic

interoperability in a SOA

3. OASIS Reference Model for Semantic Services Oriented Architecture docs.oasis-

open.org/ex-semantics/sematicsoarm/latest

4. OASIS SOA Reference Model http://www.oasis-open.org/committees/soa-

rm/charter.php

5. Liliana Cabral, John Domingue, Enrico Motta, Terry Payne and Farshad

Hakimpour Approaches to Semantic Web Services: An Overview and

Comparisons

6. http://www.w3.org/Submission/OWL-S/

7. http://swws.semanticweb.org/

8. http://www.w3.org/Submission/WSMO/

9. http://www.wsmx.org/

10. Michael Stollberg and Armin Haller Semantic Web Services Tutorial 3rd

International Conference on Web Services (ICWS 2005) Orlando, Florida, 2005

July 11

11. A.Haller, E. Cimpian, A. Mocan, E. Oren, C. Bussler: WSMX - A Semantic

Service-Oriented Architecture, in Proceedings of the International Conference on

Web Service (ICWS 2005). Orlando, Florida, 2005.

