
 
    
      

 

 

 
 

  Hitex Germany 
– Head Quarters – 
Greschbachstr. 12  
76229 Karlsruhe  
Germany 
 

 +049-721-9628-0 
Fax +049-721-9628-149 
E-mail: Sales@hitex.de 
WEB: www.hitex.de 

  Hitex UK 
Warwick University  
Science Park 
Coventry CV47EZ 
United Kingdom 
 

 +44-24-7669-2066 
Fax +44-24-7669-2131 
E-mail: Info@hitex.co.uk 
WEB: www.hitex.co.uk 

 

  Hitex USA 
2062 Business Center Drive 
Suite 230 
Irvine, CA 92612 
U.S.A. 
 

 800-45-HITEX (US only) 
 +1-949-863-0320 

Fax +1-949-863-0331 
E-mail: Info@hitex.com 
WEB: www.hitex.com 
 

 
      
     

 White Paper 
Test Case Design 

Using the 
Classification Tree Method 

 

   
   
 The aim of the Classification Tree Method is to 

derive a set of test case specifications starting from 
a functional problem specification. 

 

   
   
    
 Product: TESSY  

 Author: Frank Buechner  

 Revision: 02/2009 – 003  
    
   

© Copyright 2009 - Hitex Development Tools GmbH 
All rights reserved. No part of this document may be copied or reproduced in any form or by any means without prior written consent of Hitex Development Tools. Hitex Development Tools retains 
the right to make changes to these specifications at any time, without notice. Hitex Development Tools makes no commitment to update nor to keep current the information contained in this 
document. Hitex Development Tools makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular 
purpose. Hitex Development Tools assumes no responsibility for any errors that may appear in this document. DProbe, Hitex, HiTOP, Tanto, and Tantino are trademarks of Hitex Development 
Tools. All trademarks of other companies used in this document refer exclusively to the products of these companies. 
 

W
hitePaper.dot - 11/2007 - 005 

mailto:Sales@hitex.de
http://www.hitex.de/
mailto:Info@hitex.co.uk
http://www.hitex.co.uk/
mailto:Info@hitex.com
http://www.hitex.com/


White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 2/37 
 

Preface 
In order to keep you up-to-date with the latest developments on our products, we provide White 
Papers containing additional topics, special hints, examples and detailed procedures etc.  
For more information on the current software and hardware revisions as well as our update service, 
please visit www.hitex.de, www.hitex.co.uk or www.hitex.com. 
 
 
 
 
 

Contents 
1 Introduction 4 

2 The Classification Tree Method 5 
2.1 Objective 5 
2.2 A Human Being Applies It 5 
2.3 General Method 5 
2.4 Origin of the Method 5 

3 Applying the Classification Tree Method 6 
3.1 Overview: Steps to Take 6 
3.2 Step 1: Drawing the Tree 6 
3.2.1 Starting Point: Functional Problem Definition 6 
3.2.2 Determining the Test-Relevant Aspects 6 
3.2.3 Classifying the Values of a Test-Relevant Aspect 7 
3.2.4 Repeating Equivalence Partitioning 8 
3.2.5 Result: Classification Tree 9 
3.2.6 Using Boundary Values 10 
3.2.7 Testing a Hysteresis 10 
3.3 Step 2: Specifying Test Cases 11 

4 Example "is_value_in_range" 12 
4.1 Problem 12 
4.2 Test-Relevant Aspects 12 
4.3 Forming Classes 13 
4.4 Moving On Systematically 13 
4.5 A First Range Specification 14 
4.6 A Second Range Specification 14 
4.7 Extending the Tree by a Boundary Class 15 
4.8 Another Interesting Test Case Specification 16 
4.9 The Completed Classification Tree 17 
4.10 The Completed Test Case Specification 19 
4.11 Another Test Case Specification 20 

5 Tool Support 22 
5.1 Classification Tree Editor CTE 22 
5.1.1 The Drawing Area 22 

http://www.hitex.de/
http://www.hitex.co.uk/
http://www.hitex.com/


White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 3/37 
 

5.1.2 The Combination Table 23 
5.1.3 General 24 
5.2 Tessy 25 

6 More on the Classification Tree Method 26 
6.1 Composition 26 
6.2 Sequences of Test Case Specifications 27 
6.3 Coping with Big Trees 28 
6.3.1 Refinements 28 
6.3.2 Simplifying Specifications 28 
6.4 Separating Specification from Data 29 
6.4.1 The Difference between Abstract and Parameterized 29 
6.4.2 Parameterization 30 

7 Example "Ice Warning Indication" --- Continued 32 
7.1 Where We Left Off 32 
7.2 Hysteresis Using a State 33 
7.3 Hysteresis Using a Sequence 34 
7.4 Hysteresis Using a Sequence and Boundary Values 35 

8 Advantages of the Classification Tree Method 36 
8.1 Visualizes Testing Ideas 36 
8.2 Gives Confidence 36 
8.3 Reduces Complexity 36 
8.4 Checks Problem Specification 36 
8.5 Estimates Testing Effort 36 

9 Literature 37 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 4/37 
 

1 Introduction 
Testing is a compulsory step in the software development process. However, the planning of such 
testing often raises the same questions: 

• How many tests should be run? 

• What test data should be used? 

• How can error-sensitive tests be created? 

• How can redundant tests be avoided? 

• Have any test cases been overlooked? 

• When is it safe to end testing? 

Anyone who has been confronted with such issues will be glad to know that the Classification Tree 
Method (CTM) offers a systematic procedure to create test case specifications based on a problem 
definition. 
 
 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 5/37 
 

2 The Classification Tree Method 

2.1 Objective 
The objective of the Classification Tree Method (CTM) is to transform a (functional) definition of a 
problem systematically into a set of error-sensitive, low redundancy set of test case specifications. 
The systematic approach yields a high probability that the resulting set of test specifications is 
complete, i.e. that no relevant tests are overlooked. Naturally, correct usage of the method and an 
appropriate integration in the development process are prerequisites. 
Having a complete set of tests gives evidence when it is safe to end testing. 
 
 

2.2 A Human Being Applies It 
The Classification Tree Method (CTM) is applied by a human being. Therefore, the outcome of the 
method depends on the experiences, reflections, and appraisals of this human being, i.e. of the user 
of the CTM. Most probably two different users will come out with a different set of test case 
specifications for the same functional problem.  
However, both sets could be considered to be "correct", because there is no absolute correctness. (It 
should be clear that there are set of test cases that are definitively wrong or incomplete). Because of 
the human user, errors cannot be avoided. One remedy is the systematic inherent in the method. This 
systematic guides the user and stimulates his creativity. The user shall specify test cases with a high 
probability to detect a fault in the test object. Such test cases are called "error-sensitive" test cases. 
On the other hand, the user shall avoid that too many test cases are specified, that are superfluous, 
i.e. do not increase test intensiveness or test relevance. Such test cases are called "redundant" test 
cases. 
It is advantageous, if the user is familiar with the field of application the method is applied in. 
 
 

2.3 General Method 

The Classification Tree Method is a general method, i.e. it can not only be applied to module/unit 
testing of embedded software, but to software testing in general and also to functional testing of 
problems, that are not software related. The prerequisite to apply the method is to have available a 
functional specification of the behaviour of the test object. 
The CTM incorporates several well-known approaches for test case specification, e.g. equivalent 
partitioning, and boundary value analysis. 
 
 

2.4 Origin of the Method 

The Classification Tree Method stems from the former software research laboratory of Daimler in 
Berlin, Germany. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 6/37 
 

3 Applying the Classification Tree Method 

3.1 Overview: Steps to Take 

Step 1: Drawing the classification tree by determination of the test relevant aspects and the values 
they can take. 

Step 2: Specifying test cases by selection of leaf classes of the classification tree. 
 
Sometimes there is an (optional) intermediate step: Assigning values to classes. This step is only 
possible when Tessy is involved. See section Parameterization on p. 30. 
 
 

3.2 Step 1: Drawing the Tree 

3.2.1 Starting Point: Functional Problem Definition 

The Classification Tree Method is applied to the (functional) specification of a test object. This can be 
thought of as a description of the expected behaviour of the test object, hence functional. "If the button 
is pushed, the light will go on; if the button is released, the light will go off" is a very simple example of 
a functional specification for the behaviour of a test object. 
Data processing software normally solves functional problems, since input data is processed 
according to an algorithm (i.e. the function) to become output data (i.e. the solution). 
 

3.2.2 Determining the Test-Relevant Aspects 

The CTM starts by analysing the functional specification. This means, the human user of the method 
thinks about this specification with the objective to figure out the so-called test-relevant aspects of the 
specification at hand. An aspect is considered relevant if the user expects that aspect to influence the 
behaviour of the test object during the test. In other words, an aspect is considered relevant if the user 
wants to use different values for this aspect during testing. To draw the tree, these aspects are worked 
on separately. This reduces the complexity of the original problem considerably, what is one of the 
advantages of the CTM. 
 

3.2.2.1 Example for an Test-Relevant Aspect 

Consider systems that measures distances in a range of some meters, e.g. the distance to a wall in a 
room. Those systems usually send out signals and measure the time until they receive the reflected 
signal. Those systems can base on two different physical effects: One can use sonar to determine the 
distance, whereas the other can use radar.  
The question is now: Is the temperature of the air in the room a test relevant aspect for the test of 
these measurement systems? Quite astonishingly at first glance, the answer is "yes" for one system 
and "no" for the other. However, you soon reckon that the speed of sound in air (sonar) is dependent 
on the temperature of the air. Therefore, to get exact results, the sonar system (hopefully) takes this 
temperature into account during the calculation of the distance. To test if this is working correct, you 
have to do some tests at different temperatures. Therefore, the temperature is a test-relevant aspect 
for the sonar system. On the other hand, we all know that the speed of a radar signal, that travels at 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 7/37 
 

the speed of light, is independent from the temperature of the air it travels in (it didn’t even need air to 
travel). Therefore, the temperature of the air is not a test-relevant aspect for the testing of the radar 
system, i.e. it would be superfluous to do testing at different temperatures. 
This example shows that it needs careful thinking to figure out (all) test relevant aspects. I.e. it would 
lead to poor testing if someone simply takes the test cases for the radar system and applies them to 
the sonar system without adding some temperature-related test cases. Additionally, this example 
illustrates that it is advantageous to have some familiarity with the problem field at hand when 
designing test cases. 
 

3.2.3 Classifying the Values of a Test-Relevant Aspect 

After all test relevant aspects are determined, the values that each aspect may take are considered. 
The values are divided into classes according to the equivalence partitioning method. Values are 
assigned to the same class, if the values are considered equivalent for the test. Equivalent for the test 
means that if one value out of a certain class causes a test case to fail and hence reveals an error, 
every other value out of this class will also cause the same test to fail and will reveal the same error.  
In other words: It is not relevant for testing which value out of a class is used for testing, because they 
all are considered to be equivalent. Therefore, you may take an arbitrary value out of a class for 
testing, even the same value for all tests, without decreasing the value of the tests. However, the 
prerequisite for this is that the equivalence partitioning was done correctly, what is in the responsibility 
of the (human) user of the CTM. 
Please note: 

• Equivalent for the test does not necessarily mean that the result of the test (e.g. a calculated value) is the 
same for all values in a class. 

• Equivalence partitioning must be complete in mathematical sense: Every possible value of a test relevant 
aspect must be assigned to a class. 

• Equivalence partitioning must be unique in mathematical sense: A value of a test relevant aspect must be 
assigned to a single class, and not to several classes. 

 

3.2.3.1 Example for Equivalence Partitioning: Ice Warning 

As example, we take the following functional problem specification: 
 
 
An ice warning indication in the dashboard of a car shall be tested. This ice warning indication 
depends on the temperature reported by a temperature sensor at the outside of the car. This sensor 
can report temperatures from -60 °C to +80 °C. At temperatures above 3 °C the ice warning shall be 
off, at lower temperatures it shall be on.  
 

  
It is obvious that the temperature is the only test-relevant aspect. To have an reasonable testing effort, 
we do not want to have a test case for every possible temperature value. Therefore, all possible 
temperature values need to be classified according to the equivalence partitioning method. It is an 
important "best practise" to find out if invalid values may be possible, when applying equivalence 
partitioning. In our case a short circuit or an interruption of the cable could result in an invalid value. 
Therefore, we should divide the temperature values in valid and invalid values first. The invalid values 
can relate to temperatures that are too high (higher than 80 °C) and to temperatures that are too low 
(lower than -60 °C). Further it is tempting to form two classes out of the valid temperatures: The first 
class shall contain all the values that result in the ice warning display being on (i.e. from -60 °C to 
3 °C) and the other class shall contain all values that result in the ice warning display being off (i.e. 
from 3 °C to 80 °C). This is depicted in the picture below. 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 8/37 
 

 

 
Fig. 1 Initial equivalence partitioning for "ice warning" 
 
 
The equivalence partitioning in the figure above leads to at least four test cases, because we need to 
take a value out of each class for the tests. 
 

3.2.4 Repeating Equivalence Partitioning 

An equivalence class can be sub-divided according to additional aspects. This equivalence partitioning 
on several levels reduces the complexity of equivalence partitioning, because you can consider each 
class isolated from the other classes and decide, if (and how) it needs to be sub-divided or not. 
Furthermore, this equivalence partitioning on several levels documents the thoughts resp. stages of 
work until the final equivalence partition. This serves understandability and traceability of the result. 
Also it allows easily reverting steps if the final equivalence partition has become too fine granulated. 
 

3.2.4.1 Example for Repeated Equivalence Partitioning 

For the example "ice warning", the classification of the valid values is not detailed enough (in my 
opinion), because according to the equivalence partitioning method, it would be sufficient to use a 
single, arbitrary value out of a class for all the tests. This could be for instance the value +2 °C out of 
the class of temperatures, for which the ice warning display is on. In consequence, no test with a 
minus temperature would check if the ice warning display is on. To avoid this consequence, you could 
divide this class further according to the sign of the temperature. This reflection could result in a 
classification tree according to figure below. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 9/37 
 

 
Fig. 2 Repeated equivalence partitioning for "ice warning" 
 
 
 

3.2.5 Result: Classification Tree 

Using the CTM, the result of the repetition of equivalence partitioning (for all test relevant aspects) is 
depicted in the so-called classification tree. The root of the tree is at the top, it grows downwards. The 
root represents the functional problem; the test relevant aspects depart from the root. Test relevant 
aspects (also called classifications) are drawn in nodes depicted by rectangles. Classes are shown in 
the classification tree as frameless nodes. The branches, which represent the classes, emerge from 
the classification nodes. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 10/37 
 

3.2.5.1 Classification Tree for the Example "Ice Warning" 
 

 
Fig. 3 A possible classification tree for "ice warning" 
 
 

3.2.6 Using Boundary Values 

The idea behind using boundary values for test cases is that values at the borders of a range of values 
are better suited to form error-sensitive test cases that values in the middle. 
The idea behind boundary values analysis is contrary to equivalence partitioning, because one 
method takes a set of values as equivalent and the other method prefers special values in such a set. 
Despite the fact that the idea behind boundary values analysis is exactly the opposite of equivalence 
partitioning, both approaches can be expressed in the CTM. An example for it is given in section 
Extending the Tree by a Boundary Class (p. 15) and in section The Completed Classification Tree 
(p. 17) (see p. 18 and also section Hysteresis Using a Sequence and Boundary Values on p. 35). 
 

3.2.7 Testing a Hysteresis 

The current problem specification of the "ice warning" example does not mention hysteresis. However, 
it may be tempting to extend the current problem specification in that fast changes in the state of the 
ice warning display shall be avoided. For instance, the ice warning display shall be switched off only 
after the temperature has risen to more than 4 °C. This could be realized by a hysteresis function. 
The necessary test cases for such a hysteresis function can be specified by the CTM. An example for 
it is given in section Hysteresis Using a State (p. 33) et seqq. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 11/37 
 

3.3 Step 2: Specifying Test Cases 

Using the CTM, test cases are specified in the so-called combination table below the classification 
tree. The leaf classes of the classification tree form the head of the combination table. A line in the 
combination table depicts a test case. The test case is specified by selecting leaf classes, from which 
values for the test case at hand shall be used. This is done by the human user of the method, by 
setting markers in the line of the respective test cases in the combination table. 
 

 
Fig. 4 Result of the CTM: Classification tree (above) with combination table (below) (from [4]) 
 
 
It may be tempting to combine every class with every other class during the specification of the test 
cases. Besides the fact, that not every combination might be possible for logical reasons, it is not the 
intention of the CTM to do so, despite the fact that it could be done automatically by a tool. This would 
lead to many test cases, with the disadvantages of (a) loss of overview and (b) too much effort for 
executing the test cases. 
The objective of the CTM is to find a minimal, non-redundant (but sufficient) set of test cases by trying 
to cover several aspects in a single test case, whenever possible. Similar to the drawing of the tree, it 
depends on the appraisal and experience of the (human) user of the method, how many (and which) 
test cases are specified. Obviously the size of the tree influences the number of test cases needed: A 
tree with more leaf classes naturally results in more test cases than a tree with less leaf classes. The 
number of leaf classes needed at least for a given tree is called the "minimum criterion". It can be 
calculated from the consideration that each leaf class should be marked in at least one test case, and 
that some leaf classes cannot be combined in a single test case, because the classes exclude each 
other. Similar a "maximum criterion" can be calculated, which gives the maximal number of test cases 
for a given classification tree. A rule of thumb states that the number of leaf classes of the tree gives 
the order of magnitude for the number of test cases required for a reasonable coverage of the given 
tree. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 12/37 
 

4 Example "is_value_in_range" 

4.1 Problem 

Here is a very basic example of a functional problem definition: 
 
 
A start value and a length define a range of values. Determine if a given value is within the defined 
range or not. Only integer numbers are to be considered.  
 

 
 

 
Fig. 5 The problem "is_value_in_range" depicted graphically 
 
 
It is obvious, that exhaustive testing is practically impossible, because we get 65536 * 65536 * 65536 
= 281.474.976.710.656 test cases, even if we assume only 16 bit integers. If we would assume 32 bit 
integers … well, we better do not. 
 
 

4.2 Test-Relevant Aspects 

The start of the range and the length can be regarded as test relevant aspects. This is convenient 
since, according to the problem definition, a range of values is defined by a start value and a length. 
Furthermore, it reflects the intention to use different values for the start and the length during testing, 
what sounds reasonable. 
Furthermore, we should have some test cases, which result in "inside", and other test cases which 
result in "outside". We call the corresponding aspect "position", because the position of the value 
under test with respect to the range determines the result. 
So the three test-relevant aspects to be used for classifications are initial value, length and position 
and they thus form the basis of the classification tree.  
 

 
Fig. 6 The initial classification tree with three test-relevant aspects 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 13/37 
 

 
The initial classification tree features three test-relvant aspects, which form the three initial 
classifications. They are depicted in the rectangular nodes emerging from the root node 
("is_value_in_range"). 
 
 

4.3 Forming Classes 

Now classes are formed for the base classifications according to the equivalence partitioning method. 
Usually, the problem specification gives us hints how to form the classes. E.g. if the problem 
specification would state "if the start value is greater than 20, the length value doubles", we should 
form a class for start values greater than 20 and a class for start values smaller than resp. equal to 20.  
Unfortunately, the problem specification at hand is too simple to give us similar hints. However, since 
the start value can take on all integer numbers, it would be reasonable to form a class for positive 
values, a class for negative values, and another class for the value zero. (It would also be reasonable 
to form just two classes, e.g. one class for positive start values including zero and the other class for 
negative start values. This depends on ones emphasis having zero as value for the start of the range 
in a test case or not.) 
Classes are shown in the classification tree as frameless nodes. The branches, which represent the 
classes, emerge from the classification nodes (in this case: "range_start"). 
 

 
Fig. 7 The classification tree for "is_value_in_range" - further developed 
 
 
In the above tree the classification "position" is omitted. It will be elaborated later. 
 
 

4.4 Moving On Systematically 

Because of the systematic inherent in the CTM, and because "range_length" is an integer as well as 
"range_start", it is stringent to use for "range_length" the same classes as for "range_length". This 
results in the following tree. 
 

 
Fig. 8 The classification tree for "is_value_in_range" - further developed 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 14/37 
 

 
Because we have omitted "position" in the above tree, currently the bottom of the tree consists of leaf 
classes only. This allows us specifying a first test case, or better a range to be used in the first test 
case. 
 
 

4.5 A First Range Specification 

To specify a first range (to be used In the first test case), we have to insert a line in the combination 
table and to set markers on that line. 
 

 
Fig. 9 A first specification for the range in the combination table 
 
Two markers are set on the line for the first specification. One marker selects the class "positive" for 
the start of the range; the other marker selects the class "positive" for the length of the range. Hence a 
range with the start value of, say, 5 and a length of, say, 2 would be according to this specification. 
This is not remarkable; such a value pair most probably would have been used in any case when test 
cases for the problem at hand are thought of. Therefore, this first specification was named "Trivial". 
However, with the same tree as above, a much more interesting test case range can be specified. 
 
 

4.6 A Second Range Specification 

We can insert a second line in the combination table and specify a much more interesting tests case. 
 

 
Fig. 10 A second specification for the range in the combination table 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 15/37 
 

For the second specification, again two markers are set. They specify that a negative value shall be 
used both for the start of the range and for the end of the range. Hence a range with the start value of 
-5 and a length of -2 would be according to the second specification. But this value pair raises some 
questions: Shall the value -6 lie inside the range? Or shall the value -4 lie inside the range? Or shall 
no value at all lie inside the range, if the length of the range is negative? Each opinion has its 
supporters and it is hard to decide what is to be considered "correct". Actually, at this point it is out of 
our competence to decide what is correct. We have found a problem of the specification! 
It is important to note that it is a valuable result to find a problem (omission or contradiction) in the 
functional problem specification; and that it was achieved in the case at hand during test case 
specification for the functional problem; and it is generally more likely to detect a problem in the 
functional specification if the test case specification is systematic; and that the CTM is a systematic 
method for test case specification. Hence, the CTM provides good means to detect problems in the 
functional problem specification. 
Probably a test case using a negative length would not have been used if the test case specification 
would have been done spontaneous and non-systematic. But a negative length is completely legal for 
the functional problem specification that was given above. If you consider that the problem 
specification at hand was a very simple one, you may imagine how likely it is to overlook a problem in 
a more comprehensive and complicated problem specification. 
 
 

4.7 Extending the Tree by a Boundary Class 

In case we are not satisfied with the fact that a fixed single positive value, e.g. 5, may serve as value 
for the start of the range in all test cases, we can sub-divide the class "positive" according to a suitable 
classification. In our example, we classify according to the size. The idea behind this is to have a class 
containing only a single value, in our case the highest positive value existing in the given integer 
range. We use this value because it is an extreme value, and as we know, using extreme values (or 
boundary values) in test cases is well-suited to produce error-sensitive (or interesting) test cases. 
 

 
Fig. 11 A class for an extreme value for the start of the range is introduced 
 
 
In the figure above, the positive values for the start of the range are subdivided according to their size. 
This results in the two classes "normal positive" and "maximal positive". The class "maximal positive" 
holds the highest possible positive value (i.e. MAX_INT), and the class "normal positive" holds all 
other positive values. This satisfies mathematical completeness. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 16/37 
 

Remark 1 
Another possibility to classify the positive start values would have been for instance to classify in odd 
and even values. This would have been completely legal. This would have been probably also 
sensible for e.g. a problem of number theory, but not target-oriented for the problem at hand. 
 
Remark 2 
Please note that for the moment we do not know and we need not to know the size (in bits) of the 
integers used in the problem at hand. We simply specify "the highest positive value in the given 
integer range". This keeps our test case specification abstract!  I.e. our test case specification is 
appropriate for any integer size. As soon as we assume we use, e.g. 16 bit integers, and therefore 
parameterize our test case by specifying 32767 as value in the class "maximal positive", we loose this 
abstraction. I.e. if we port the parameterized test case to a, say, 32 bit integer system, the test case 
looses its sense. This is not the case if we port the abstract test case specification. 
 
 

4.8 Another Interesting Test Case Specification 

With the classification tree extended according to the figure above, we can insert an additional line in 
the combination table and specify again an interesting range for a third test case. 
 

 
Fig. 12 The third range specification provokes a wrap-around 
 
 
The third range specification in the figure above combines the highest positive number for the start 
value of the range with a positive length, i.e. the range exceeds the given integer range. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 17/37 
 

 
Fig. 13 The third range exceeds the given integer range 
 
 
The situation with the third range specification is similar to the situation depicted in the figure above. 
The situation raises some questions: Will the situation be handled sensible and gracfully by the test 
object? Or will it crash due to the overflow? Will the negative values on the left hand side in the figure 
above (depicted in yellow) be accounted to lie inside the range or not? And what is correct with 
respect to the last question? The problem specification above does not give an answer to the latter 
question, i.e. again we have found a weak point in the problem specification. 
To sum up, designing test cases according to the classification tree method has revealed two 
problems of the problem specification and has lead to interesting test cases so far. 
 
 

4.9 The Completed Classification Tree 
 

 
Fig. 14 The completed classification tree 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 18/37 
 

In the figure above, one possible completed classification tree is depicted. This tree is discussed in the 
following. 

• Analogous to having a class "maximal positive" for the start value of the range, a class "maximal negative" is 
introduced for the negative start values of the range. The idea behind this class is to combine the maximal 
negative start value with a negative length of the range, what shall provoke an underflow or negative wrap-
around. This idea comes from the systematic in the CTM: If a positive wrap-around is seen as an interesting 
test case, also a negative wrap-around should be exercised. 

• An example for a composition is given by "range". A composition may be used for a relation "consists of". In 
our case, the range consists of a start value and a length. Compositions are depicted by rectangles with 
thicker borders than rectangles for classifications. For more on compositions: See section Composition on 
p. 26. 

• The final tree features still the three initial classes "positive", "zero", and "negative" for the length of the range. 
It is important to note that the tree reveals at a glance that nothing like "maximal positive length" or similar is 
considered to be useful for the testing problem at hand. 

• Now we catch up the discussion of the classification "position" introduced in  Fig. 6 (p. 12), but not elaborated 
until now. It is obvious that a position can either be inside or outside the range, hence this classification 
suggests itself. Furthermore, it is obvious that there are two different areas outside the range: below the range 
and above the range. This is reflected in the classification "position outside". (If the tree would miss such a 
classification, it may well be considered "incorrect"). 

• The class "inside" of the classification "position" could well be a leaf class of the classification tree. However, 
in the classification tree in the figure above, this class is subdivided further in the sub-classes "range_start", 
"opposite_border", and "inlying". This is done to force the use of boundary values in the test cases. If a test 
case specification selects the class "range_start", the value that shall be checked if it is inside the range or not 
shall take the value of the start of the range, i.e. the lowest value that is considered to be inside the range, i.e. 
a boundary value. The class "opposite_border" is intended to create an analogous test case specification, but 
using the highest value that is considered to be inside the range. The class "range_start" and the class 
"opposite_border" both contain only a single value. All other values inside the range are collected in the class 
"inlying"; this class exists mainly because of the requirement for completeness of equivalence partitioning. A 
similar approach to use boundary values is visible in the classes "at border" for positions outside the range. 

 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 19/37 
 

4.10 The Completed Test Case Specification 

In Fig. 15, the same classification tree as in the figure above is depicted, but with a completed 
combination table, what results in a complete test case specification for the functional problem at 
hand. 
 

 
Fig. 15 The completed test case specification 
 
 
the test case specification above lists 14 test cases. Please note that these are specified by the 
human user, i.e. they depend on its appraisal. Thus the scope of the test remains in principle for the 
user to decide. However, based on the classification tree, it’s possible for some values to be 
determined that provide clues to the number of test cases required. The first value is the number of 
test cases, if each leaf class is included at least once in a test case specification. This number is 
known as the minimum criterion. In our example, the largest amount of leaf classes, namely seven, 
belong to the base classification "position". Seven is thus the value of the minimum criterion. The 
maximum criterion is the number of test cases that results when all permitted combinations of leaf 
classes are considered. In our example, the maximum criterion amounts to 105 (i.e. 5 * 3 * 7). The 
maximum criterion takes into account that it is not possible to select e.g. a negative length and a 
positive length for the same test case specification, because this is impossible by the construction of 
the tree. However, the maximum criterion takes not into account that it is not possible to select e.g. a 
zero length and "inlying", because this is not impossible by the construction of the tree, but by the 
semantics of the function problem at hand. 
A reasonable number of test case specifications obviously lies somewhere between the minimum and 
the maximum criterion. As a rule of thumb, the total number of leaf classes gives an estimate for the 
number of test cases required to get sufficient test coverage. In the test case specification at hand, the 
classification tree has 15 leaf classes, what fits well to 14 test cases. 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 20/37 
 

By the test case specification in the figure above, you can deduct how the functional problem 
specification was extended with respect to the questions raised in sections A Second Range 
Specification (p. 14) and Another Interesting Test Case Specification (p. 16). 

• Question from section 4.6: If the length of the range is negative, are there values that can be inside the range? 
The answer is obviously "yes", because in test case specification no. 5 and no. 6 a negative length shall be 
used and the position of the value shall be inside the range. 

• Question from section 4.8: If the length of the range exceeds the given integer range, shall negative values be 
inside the range? Test case specification no. 12 clarifies, that this should not be the case. 

The leaf class "inlying" is selected for only one test case specification, namely test case specification 
no. 1. This reflects the fact that this class exists only because of the requirement for mathematical 
completeness of equivalence partitioning, and not because the inlying values are considered to 
produce error-sensitive test cases. 
 
 

4.11 Another Test Case Specification 

In Fig. 16, an alternative test case specification to the functional problem specification at hand is 
depicted. 
 

 
Fig. 16 An alternative test case specification 
 
 
What are the differences to the more elaborated test case specification in the section above? 

• The start value of the range is not mentioned in the classification tree. This means, the start value is not 
considered to be a test-relevant aspect by the user of the CTM. In consequence, any arbitrary value can be 
used as start value in the four test cases. This value can be fix for all test cases, but does not have to be. 

• The problem of a negative length is completely neglected. For the problem specification from section Problem 
on p. 12 which specifies a length to be an integer and hence also the length to be negative, this is a serious 
flaw. 

• The problem of wrap-around is neglected. This may be considered to be an esoteric problem, and therefore it 
could be accepted that it is not mentioned in the alternative test case specification. 

• The usage of boundary values is not forced by the alternative test case specification. This is questionable, 
because boundary values produce error-sensitive test cases. The alternative test case specification minimizes 
testing effort (by specifying only four test cases), but this is at the cost of thoroughly testing. 

 
But the point is not which test case specification is better. The main point is: 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 21/37 
 

 
Test case specification according to the Classification Tree Method visualizes testing ideas!  
 

 
This is illustrated by the discussion of the two solutions above. 
 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 22/37 
 

5 Tool Support 
Applying the CTM is supported by the Classification Tree Editor CTE. The test tool Tessy can import 
test case specifications from CTE. 
The description of CTE refers to CTE/ES V2.4. 
Both CTE and Tessy originate from the former software research laboratory of Daimler in Berlin. 
 
 

5.1 Classification Tree Editor CTE 

The Classification Tree Editor CTE supports drawing classification trees and specifying test cases in 
the combination table. 
 

5.1.1 The Drawing Area 

The CTE features a graphics editor especially made for drawing classification trees. For instance, the 
editor helps to create the required sequence of classifications and classes, i.e. it suggests only the 
allowed node types as sub-nodes for a given node. 
 

 
Fig. 17 Creating new nodes is context-sensitive 
 
 
In the figure above, a sub-node for a class shall be created. The CTE does not allow creating e.g. a 
class node as sub-node for a class and thus avoids illegal sequences of nodes. 
To manage bigger trees, sub-trees may be used. Sub-trees are called "refinements" of classes or 
classifications. See section Refinements (p. 28). Sub-trees may be stored separately and may be used 
as building blocks for other trees, similar to a library. 
For better overview in bigger trees, the CTE features a navigator window. It allows easy and 
comfortable navigation to any location of the tree. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 23/37 
 

 
Fig. 18 The navigator window allows moving easily to any tree location 
 
 
Descriptions and comments may be inserted in the tree or attached to tree nodes. This serves for 
documentation purposes. 
The layout of a tree can be done automatically according to different styles. This provides for good 
overview and for efficient use of the drawing area. 
Elements of the tree (i.e. single nodes or sub-trees) can be cut or copied and pasted to other locations 
in the tree. 
 

5.1.2 The Combination Table 

The CTE also helps managing test case specifications in the combination table. 
Test cases specifications can be defined as sequences. This can be used to describe dynamic tests, 
See section Sequences of Test Case Specifications on p. 27. 
Comments/descriptions can be attached to test case specifications. This may be used to link a test 
case to the requirement it tests. Also the expected result of a test can be specified. After a test was 
executed, the actual result (passed/failed) and the actual reaction can be documented. When the CTE 
is used in conjunction with Tessy (see below), the passed/failed result is transferred automatically from 
Tessy to the CTE. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 24/37 
 

 
Fig. 19 Properties of a test case specification in the combination table 
 
 

5.1.3 General 

The CTE can check a classification tree and its combination tables. This reveals unused classes, 
empty test case specifications, incomplete trees, and the like. 
The CTE can calculate some metrics on the trees, e.g. the minimum and maximum criteria (see end of 
chapter 3.3 on p. 11 and chapter 4.10 on p. 19). This allows an estimate of the effort required for 
testing. 
Test case specifications in the CTE can be exported/saved in various formats (*.xml, *.txt, *.html, 
*.wmf), and also to Word, Excel, or directly to a printer. This can be used to import the test case 
specifications into other tools, e.g. test management tools or test execution tools. 
To Tessy (see below), test cases specifications can be exported directly. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 25/37 
 

5.2 Tessy 

Tessy [1] is a tool to automate module/unit testing of embedded software. Tessy manages test cases, 
executes the test, evaluates test results and creates test reports. Also code coverage is determined by 
Tessy automatically. 
The CTE can export test case specifications to Tessy; Tessy can export test results (passed/failed) 
back to CTE. 
 

 
Fig. 20 Test case specifications from the CTE were executed in Tessy 
 
 
In Fig. 20, test case specifications for the example "is_value_in_range" were exported form the CTE to 
Tessy and then executed by Tessy. The green/red icons specify passed/failed test results. These test 
results are exported from Tessy back to CTE. 
 

 
Fig. 21 Green tick marks and red crosses indicate the passed/failed result of a test 
 
 
In Fig. 21, the passed/failed results of a test were transferred from Tessy to CTE automatically, but 
this can also be done manually in the test case properties of the CTE. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 26/37 
 

6 More on the Classification Tree Method 

6.1 Composition 

Usually classifications and classes alternate in the classification tree. The relation between a 
classification and its classes is "can take the value of". It is important to distinguish this relation from 
"consists of" 
 

 
Fig. 22 Classification "car" 
 
 
On the left hand side in the figure above, the relation between classification (car) and classes (wheels, 
chassis, motor) is "consists of", i.e. a car consists of wheels, motor, and chassis. This is not the 
intended semantic between classification and class in a classification tree. A correct semantic is 
depicted on the right hand side of the figure above: A car can take the value of a bus, or a truck, or a 
passenger car. 
If you need to express "consists of", you may use a "composition" in a classification tree. A 
composition is depicted by a rectangular node like classifications, but with thicker borders than 
classifications. Compositions are "transparent" for the classification / class alteration. Values from 
classes related to classifications combined by a composition may be combined in a test case 
specification, i.e they do not exclude each other. 
 

 
Fig. 23 Composition "car" 
 
 
In the classification tree for "is_value_in_range" (refer to Fig. 14 on p. 17) also uses a composition. 
 

 
Fig. 24 Composition "range" 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 27/37 
 

6.2 Sequences of Test Case Specifications 

The CTM also can be used to specify test cases that consist of sequences of test case. 
 

 
Fig. 25 A sequence of steering angles 
 
 
In the figure above, two sequences of steering angles are specified. The part of such a sequence is 
called "test step". I.e. sequence no. 2 consists of test steps 2.1, 2.2, 2.3, 2.4. 
On the right hand side, the time specification for the sequence is given. There are two types of time 
specifications available: Duration, which specifies the time a certain sub-sequence shall take; and 
distance, which specifies the starting point of a test step on an absolute time line. 
The first sequence starts in the neutral position, which shall be held for 1 second. Then the steering 
wheel shall be turned to the right; in this position is shall be held for 3 seconds; and so on. 
The second sequence also starts in the neutral position, which shall be held also for 1 second. Then 
the steering wheel also shall be turned to the right; but in this position is shall be held for 7 seconds; 
and so on. 
Several graphical symbols may be used to specify the test cases. The markers could be circles, 
triangles, squares, and they can be solid or not. The transitions between the sub-sequences can have 
different shapes: solid lines, dashed lines, etc. This is for better overview only; it has no predefined 
built-in meaning whatsoever. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 28/37 
 

6.3 Coping with Big Trees 

Sometimes trees grow too big. There are several approaches to cope with this. 
 

6.3.1 Refinements 

Bigger trees can be allocated to several drawing pads. For this, the tree is spilt into sub-trees, which 
form a hierarchy of trees. The transition points between the different drawing pads are called 
refinements. Refinements may be used both for classes and for classifications. Refinements for 
classes are depicted by an underlined class name. Refinements for classifications are depicted by a 
double line at the side of the classification rectangle. 
 

 
Fig. 26 Refinement for classes and classifications 
 
 

6.3.2 Simplifying Specifications 

Sometimes it is possible to reduce the number of classes in a tree by abandoning explicit test case 
specification, and use descriptive texts to specify your testing intentions. This results in smaller trees 
and hence improves overview. It may lead to less test case specifications required for that tree; but 
this is not the case in any situation. 
 

 
Fig. 27 Abandon explicit test case specification 
 
 
In the figure above, a part of the classification tree from Fig. 14 on p. 17 was taken and simplified. It is 
now no longer guaranteed (by the syntax of the tree) that a test case with the value "range_start" will 
be present in the set of test cases. This objective is transferred to the process of specifying parameter 
values (i.e. data) for test case specifications. There parameter values shall be varied in a way that 
boundary values are used. This abandons the idea behind equivalence partitioning. 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 29/37 
 

Please note: If the tree from Fig. 14 on p. 17 is simplified as described in the figure above, the number 
of required test case specifications (i.e. the minimum criterion) actually decreases. This is because the 
sub-tree deleted is relevant for the minimum criterion. I.e. the tree according to Fig. 14, the minimum 
criterion is 7. If the tree is simplified according to the figure above, the minimum criterion is decreased 
to 5. However, not all simplifications of the tree decrease the minimum criterion. E.g. if you use only 
two classes for the length of the range instead of three classes as depicted in Fig. 14, the minimum 
criterion will not be decreased. 
 
 

6.4 Separating Specification from Data 

6.4.1 The Difference between Abstract and Parameterized 

When using the CTM, one should use abstract test case specifications. Care shall be taken that a test 
case is not parameterized too early. Ideally, test case specification is done without knowing about the 
implementation of the test object. This may prevent to parameterize too early, because the necessary 
information may not be available during test case specification. 
 

 
Fig. 28 An abstract test case specification 
 
 
In the figure above, a "red" building block shall be the test object. However, without knowledge of the 
realisation/implementation, it is practically impossible to provide a parameter value (i.e. data) for "red". 
(Is the colour coded as an enumeration type? And if yes, what is the name of the component related to 
"red"? Or is the colour coded as RGB value? And if yes, how many bits make up this RGB value? And 
how is "red" coded?) 
By abstract test case specification, test case specification is kept independent of the implementation. 
Therefore, abstract test case specifications may be (re-) used for different implementations. Also 
abstract test case specification keeps the semantic of a test case specification better than a 
parameterized one. For instance, a class "prime number" could be parameterized by using the value 
"13", what actually is a prime number. But having only the plain value "13" of the parameterized test 
case, it is no longer possible to deduct the original intention. The value 13 could also be a 
representative of the class "two digit number" or of the class "value greater than 10". The knowledge 
that it is acceptable to replace 13 by 17, but not by 15, will be lost. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 30/37 
 

6.4.2 Parameterization 

When used with Tessy, the CTE allows specifying test data for a test case specification, i.e. 
parameterization of a test case. It is very tempting to do so, because it saves a lot of effort. However, 
as described in the section above, abstraction is lost. 
Parameterization is done in two steps: 
(1) A variable of the interface of the test object is assigned to a classification of the classification tree. 

The set of interface variables is determined by Tessy and exported to the CTE. 
(2) A value is assigned to a class emerging from this classification. 
 
Every test case specification, for which a marker in the combination table selects a class with a value 
causes that value to be exported to Tessy when the respective test case specification is exported to 
Tessy. 
 

 
Fig. 29 Assigning a value to a class 
 
 
In the upper part of the figure above, the interface variable "r1.range_len" is assigned to the classi-
fication "Range Length". In the lower part of the figure above, a value is assigned to the class "zero", 
which emerges from the classification "Range Length". The value assigned to the class "zero" is 0. For 
every test case specification, in which the class "zero" is marked, the value 0 is used to parameterize 
this test case. The value in question is automatically transferred to Tessy when the test cases speci-
fications are exported to Tessy.  
Since 0 for "zero" is natural and obvious, it is not to criticize to parameterize in that way. But the same 
way a value could also be assigned to e.g. the class "positive" of the same classification. However, 
which value shall now be selected? Shall it be 5, or 10, or 20? Or 100, 1000, 10000? This is not easy 
to answer and thus gives insight to the problem of too early parameterization. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 31/37 
 

 
There is a trade-off between saving a lot of effort by parameterization and loosing to much 
abstraction (i.e. re-usability).  
Be aware of it!  
 

 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 32/37 
 

7 Example "Ice Warning Indication" --- Continued 

7.1 Where We Left Off 

In section Classification Tree for the Example "Ice Warning" on p. 10 we have designed an initial 
classification tree for the example "ice warning". If we add the combination table and set some 
markers, we get an initial test case specification. 
 

 
Fig. 30 Initial test case specification for "ice warning" 
 
 
The combination table in the figure above comprises of five test cases, which are formed very simple: 
Each leaf class of the classification tree is assigned to a test case. Each test case uses a value from 
the respective class. The names of the test cases indicate the expected result. (The expected result 
could also be defined directly as a property of a test case, together with other properties like 
description, actual result, and the like.) 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 33/37 
 

7.2 Hysteresis Using a State 

Now fast changes in the state of the ice warning display shall be avoided. This could be realized by a 
hysteresis function. The ice warning display shall be switched off only after the temperature has risen 
to more than 4 °C. (Still the ice warning display shall be switched on if the temperature falls to 3 °C or 
below). Therefore, the result of a test with a temperature between 3 °C and 4 °C depends on the 
current state (on/off) of the ice warning display. In the classification tree this can be reflected by 
introducing an additional classification, which represents the current state of the ice warning display. 
The classes of this classification are combined with values of the temperature range between 3 °C and 
4 °C. This yields two new test cases (see figure below). 
 

 
Fig. 31 Hysteresis using a state 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 34/37 
 

7.3 Hysteresis Using a Sequence 

For a better test of the hysteresis functionality than using a state as in the figure above, a test case 
could be a (time-discrete) sequence of temperature values. To specify the current state of the ice 
warning display for the tests would be superfluous, because this state would be maintained by the ice 
warning display internally. 
 

 
Fig. 32 Hysteresis using a sequence 
 
 
The combination table in the figure above describes such a test sequence (see also section 
Sequences of Test Case Specifications on p. 27). Test case no. 5 consists of a sequence of five test 
steps. They test the following sequence of the ice warning indication: Off  On  Off. Obviously, 
more sequences need to be tested, e.g. On  Off  On. 

The sequences can be displayed expanded or collapsed, what serves for a good overview. The test 
steps of a sequence are connected by lines. Each test step has properties, e.g. to note the expected 
result of the respective step. It is even possible to specify and to visualize the timely behavior of a 
sequence, as shown in the figure above. However, the current example does not require specifying a 
timely behavior, because a time-discrete, equidistant sampling of the temperature signal is assumed. 
 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 35/37 
 

7.4 Hysteresis Using a Sequence and Boundary Values 

But the test sequence in the figure above does not specify the exact values of the temperature. To test 
especially values near the borders of the hysteresis, we assume a resolution of 0.1 °C for the 
temperature. Now we can extend the classification tree by introducing appropriate classifications for 
the values of the temperature. This allows us specifying boundary values. 
 

 
Fig. 33 Hysteresis using a sequence and boundary values 
 
 
Test case specification no. 6 in the figure above now specifies rather well the characteristics of the 
temperature signal, which is used as test input to the ice warning display: The test starts with the value 
of 4.1 °C. Then it decreases and enters the hysteresis range. The lowest value reached during the test 
is 3.1 °C. After that, the temperature raises again. During the complete test the ice warning display is 
expected to be off. 
The figure above reveals at a glance that it was not in the intention of the designer of the tree to use 
2.9 °C and 3.9 °C as boundary values. This is another example on how well the CTM visualizes 
testing ideas. 
 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 36/37 
 

8 Advantages of the Classification Tree Method 

8.1 Visualizes Testing Ideas 

A primary advantage of the CTM is the visualization of testing ideas. Due to this visualization, the 
ideas are easy to communicate and to understand, e.g. during reviews or during a certification 
process. 
 

8.2 Gives Confidence 

A well-designed classification tree and carefully compiled test case specifications provide a high 
probability, that no relevant tests are overlooked. This in turn should effect that most errors (or maybe 
even all errors) will be revealed. However, it should be kept in mind that the CTM is applied by a 
human being, and therefore is depending on the appraisal of this human. Because of human 
participation, there is no complete assurance that errors are omitted generally. In case of doubt, a 
review of the test case specifications is recommended. Because of the visualization, a review should 
not need oversized effort. 
Having a set of test cases that you can rely on is prerequisite for the refactoring of a test object, 
because the test cases to re-test the test object (regression test) are available. 
 

8.3 Reduces Complexity 

When you first think about the test cases for a given problem, you usually have a lot of testing ideas 
immediately. The challenge is to structure these ideas and to sort out redundant test cases. The CTM 
reduces the effort required for that task, because it enables to consider aspects (classifications) 
separated from each other and to think in depth about required (and not required) classes according to 
the equivalence partitioning. However, a complex problem probably will need complex test case 
specifications. 
 

8.4 Checks Problem Specification 

When applying the CTM the analysis of the (functional) problem specification is basis. This checks 
automatically the problem specification for contradictions, omissions, inconsistencies and the like. In 
the example "is_value_in_range" two weak points were detected in the problem specification:  
(1) How to cope with a negative length of the range, and  
(2) how to proceed if the range exceeds the highest positive number. 
 

8.5 Estimates Testing Effort 

Just using the classification tree it is possible to calculate some metrics, e.g. the minimal number of 
test cases required for the tree at hand (i.e. the minimum criterion). This and other metrics can be 
determined using CTE. 
After all test cases are specified, you have a good estimate on the effort required. Assuming that no 
test cases are overlooked, you have a preliminary test end criterion at hand. 



White Paper: Classification Tree Method   

© Copyright 2009 Hitex Development Tools GmbH Page 37/37 
 

9 Literature 
[1]  http://www.hitex.de/perm/tessy.htm: More about Tessy and CTE. 
[2]  Grochtmann, M., Grimm, K.: Classification Trees For Partition testing, Software testing, 

Verification & Reliability, Volume 3, Number 2, June 1993, Wiley, pp. 63 – 82. 
[3]  Wegener, J., Pitschinetz, R.: Tessy – Another Overall Unit Testing Tool, Quality Week 1995. 
[4]  Grimm, Klaus: Systematisches Testen von Software: Eine neue Methode und eine effektive 

Teststrategie. München, Wien, Oldenburg, 1995. GMD-Berichte Nr. 251. 
[5]  Mirko Conrad: A Systematic Approach Of Testing Automotive Control Software, Society of 

Automotive Engineers, 2004 
[6]  Broekman, B., Notenboom, E.: Testing Embedded Software. Addison-Wesly, 2003. 
 
 
 
 

The Classification Tree Method is guidance for thinking,  
not replacement of thinking ! 

 
 
 
 

http://www.hitex.de/perm/tessy.htm

	Contents
	Introduction
	The Classification Tree Method
	Objective
	A Human Being Applies It
	General Method
	Origin of the Method

	Applying the Classification Tree Method
	Overview: Steps to Take
	Step 1: Drawing the Tree
	Starting Point: Functional Problem Definition
	Determining the Test-Relevant Aspects
	Example for an Test-Relevant Aspect

	Classifying the Values of a Test-Relevant Aspect
	Example for Equivalence Partitioning: Ice Warning

	Repeating Equivalence Partitioning
	Example for Repeated Equivalence Partitioning

	Result: Classification Tree
	Classification Tree for the Example "Ice Warning"

	Using Boundary Values
	Testing a Hysteresis

	Step 2: Specifying Test Cases

	Example "is_value_in_range"
	Problem
	Test-Relevant Aspects
	Forming Classes
	Moving On Systematically
	A First Range Specification
	A Second Range Specification
	Extending the Tree by a Boundary Class
	Another Interesting Test Case Specification
	The Completed Classification Tree
	The Completed Test Case Specification
	Another Test Case Specification

	Tool Support
	Classification Tree Editor CTE
	The Drawing Area
	The Combination Table
	General

	Tessy

	More on the Classification Tree Method
	Composition
	Sequences of Test Case Specifications
	Coping with Big Trees
	Refinements
	Simplifying Specifications

	Separating Specification from Data
	The Difference between Abstract and Parameterized
	Parameterization


	Example "Ice Warning Indication" --- Continued
	Where We Left Off
	Hysteresis Using a State
	Hysteresis Using a Sequence
	Hysteresis Using a Sequence and Boundary Values

	Advantages of the Classification Tree Method
	Visualizes Testing Ideas
	Gives Confidence
	Reduces Complexity
	Checks Problem Specification
	Estimates Testing Effort

	Literature

