Baseline Testing

By Johann du Plessis

to mainframe

MICR

Baseline Testing to mainframe

Baseline Testing
Introduction

Baseline tests form a very important part of the performance test methodology | follow. If done properly,
85% of performance problems can be identified and solved when proper baseline tests are done. Recent
experiences on three different projects show this figure to be closer to 90%. This really has me very
excited about the whole idea and implementation of baseline testing.

What is the baseline testing referred to here? Why and how are baseline tests executed? What is in place
during these tests? How do baseline tests differ from other performance tests? In this article I'll answer
these and some other questions about baseline testing.

Why Baseline Tests?

The main advantage of running proper baseline tests is the time that is saved by this. Performance
testing is a complex process and most often enough time is not available for proper test cycles. The time
problem often leads to less baseline tests being done, but over time I've learnt that this is not the place to
try and save time. In fact, baseline testing is where time can be saved.

A performance test project should at least include baseline and load tests. If possible a stress test and
some volume and soak (endurance) testing should also be included. There should be a clear
understanding of each test type. The table below describes each type of performance testing with the
terminology | use in my methodology.

Performance Testing

Type of testing Description
Baseline Done for each script with 1, 2, 5, 10, 20 and 50
users to determine baselines for mainly response
times.
Load Test system with multiple users to determine

performance under load. The number of users is
usually specified by the performance test
requirements.

Stress Load the system to its breakpoint. This is to
determine the system break point or threshold.
How the system breaks and recovers should also
be monitored.

Soak (Endurance) Testing a system under load for an extended period
of time to establish stability and behavior under
sustained use.

Volume Testing a system with a certain amount of data.
Usually includes high data and throughput
volumes.

When | started performance testing 9 years ago | learnt about and was trained with the term “load
testing”. Sometimes people referred to or used the term “stress testing” and | was told not to worry, it’s the
same thing. Today people still use mainly those two terms. The focus is definitely still on load testing and

Copyright © 2009 Micro to Mainframe

MICR®

Baseline Testing to mainframe

there’s nothing wrong with that. The end goal should always be a system that performs well under load.
The way we get there is what matters.

Preparing for and executing a load test can be a tedious task. A lot of project time is spent on the
preparation for load test execution. Data setup and management is one of the main areas that take a lot
of the tester’s time. Scripting, data preparation, linking data to scripts, scenario planning and
configuration, test environment preparation and monitoring all form part of the preparation before a load
test can be executed. Once everything is in place the test is started, but it seldom happens that the first
load test is a success. Most of the time numerous errors occur and some users will pass while others fail
until all users eventually fail. The result is usually a big mess within a very short time and data that took
hours to prepare will have to be prepared again. Monitoring also becomes a nightmare with different
errors experienced in different places. The result of this is very busy graphs that are difficult to interpret as
can be seen on the example below.

-
RN 1
=] - L =~
T . = =
] X R 8 L] -l = . '
= :_.. : - '_--' i . !i_\ - I "I' |‘ ":' : ket .t . I| .'. : - ;:.
~ el 4y B . S| Y - g e - g o T
i = '.-"’:' o | e Pk ..__;__, ol P e S - *
= al Wy A PR TP Y e v e o e TS S
af A ¥ J f i TS, -t -:i"\l" o ! ' I:'-.,L N -, ¥ Ly e K 5
P s P BP0 0L i rE"_g-i'.' A N g
5 >y SRR bt e s TR L e s g
:-.- H rrl -: v :ﬂ/: !F;_E/lf%-ti % f—: _a: !::.i - "EE'R‘_-' - F':- ‘-!" * T : - '1.-t"‘:' - Eh::":.i‘_:h_}\!_‘_:_
a ¥l o gt ._:‘ﬁ . Flpim Yilp-a "E 8 % j* 1 8 : 2 A aia g ;: ¥ ! -
=“z"-!-,¥ ’-i‘-' S R e o = 3 Fier - - s P 2 e N Y
Ut 0 T R e Al i |
o _;1” e ol T EETHEESF LY
N b i P E_ 5= o 2 -&ggh
g fach b -0 § g ha-g 8B ___'Ef_:.._: }‘.

The problem here is that a lot of time is needed before the next test can be run and it can take a lot of
time before something useful can be extracted from the test results. More useful results are needed in a
shorter space of time and that's what baseline testing delivers.

Useful Results Quickly

Having useful results to show quickly is a bonus on any project. As mentioned before the preparation for
a load test can take a long time. During this time people will be waiting impatiently for the first test results.
If the results aren’t very useful or take a long time to analyze, the situation can become difficult to
manage. On the other hand, if the first results are available after a short time and easy to read and
interpret, you will find a lot of happy people around you that will support you for the rest of the project.
This, plus the fact that you don’t have to spend hours and hours to get ready for the next test run, is the
real benefit of baseline tests. At the same time you also get the actual baseline results for the tests and
can report on this immediately.

Preparation for baseline tests doesn’t take as long as preparation for load tests. Test data is not needed
in large volumes and the hardware and software requirements to execute the tests are easily achieved.
The results are easy to read and reports can be done very quickly. If a problem shows up during the

Copyright © 2009 Micro to Mainframe

MICRE

Baseline Testing to mainframe

baseline testing this is identified easily and can be isolated at the same time. Isolating problems that show
on busy graphs usually takes a long time, but with baseline tests a lot of time is saved with this as well.

Executing Baseline Tests

Ideally baseline tests should be done with 1, 2, 5, 10, 20 and 50 users. This should be done for each
script that will be part of the load test individually and immediately isolates any problems that might occur.
The baseline tests should run for 20 to 30 minutes to get useful averages. Fight for time to do this and
make it part of your script and load test preparation. The baseline tests give everyone a clear view of
system performance and save a lot of time with identifying and isolating the causes of problems. Large
volumes of test data is not lost with every failed test run and preparation for the next test can be
completed quickly. Use these facts to motivate the need for proper baseline tests. When done properly,
you'll need a lot less time for the load testing.

The goal to work for is to start the first load test only after all the problems identified during baseline
testing have been resolved. This opens the opportunity to have an almost perfect run when executing the
first load test. Errors encountered during the load test will nearly all be load related with other problems
already fixed during the baseline tests.

Monitoring

As with all performance testing, proper monitoring should be done during the baseline testing. Without
proper monitoring you often have to repeat a test if a problem is encountered to be able to identify what is
wrong where. | always keep a close eye on monitoring throughout the performance testing. This gives me
a very good feel for the system and | can pick up very quickly if something is not right at any point during
any test. Include all the responsible people right from the start. Meaningful results can’t be extracted
without proper monitoring.

Examples — Baseline Test Results
Let’s look at some examples to put everything into perspective.

The first series of graphs show average transaction response times for a script that captures customer
details. The graphs are for 1, 5, 20 and 50 users. In this example a problem was identified with a specific
step, Search Postal Code, which had to be fixed before the actual load test with 500 users could be done.
The data preparation for this script was horrendous with a lot of unique data that could only be used once.
Starting with a 500 user load test would have caused many headaches.

The Search Postal Code transaction is highlighted in red on each graph.

Copyright © 2009 Micro to Mainframe

Capture Details — 1 User

Baseline Testing

Average Transaction Response Time

MICR®

to mainframe

Awerage Response Time (seconds)

%

=]

o

@ G

T T
00:00 05:00 10:00

T
20:00

Elapsed scenario time mm:ss

T
25:00

T
30:00

Color Scale keasLremant
[| Clignt Affardability
0 Client Contact Details
| Client Search
1 EHL Menu
B Lagin
1 Logoff
| Open Client Address Search
1 Open Emplay Search
1 Registration Hew Loan
1 Search Employer
-1 Search Postal Code
1 Select Employer
1 Submit Offer
-1 Wiho | Employer

Copyright © 2009 Micro to Mainframe

Graph's MinimumGraph's Average Graph's MarimunGraph's Median Graph's Std. Devia

2213
2977
1512
1.169
2797
2166
0.062
0.561
2104
0.561
4.738
1.231
1.325
2.837

3.42
4167
2411
2.03
2.797
2.166
0.113
0.er2
2.58
0.944
5133
2.411
212
4.57

4.894
9.305
5.985
4.941
2797
2166
0.234
1.527
7388
1.821
£.001
4738
2.709
7138

2.961
3662
2135
1.574
2797
2166
0.094
0748
3413
0735
5112
2213
1.714
4.457

1.012
1.608
1.053
0.956
]

]

0.052
0233
1.218
0.351
0.351
1.076
0733
1.334

Capture Details — 5 Users

Awerage Response Time (seconds)

Baseline Testing

Average Transaction Response Time

MICR®

to mainframe

T
15:00 20:00

T
25:00

T
45:00

Elapsed scenario time mm:ss
Color -~ Scale kM eazurement Graph's MinimumGraph's Average Graph's MarimunGraph's Median Graph's Std. Devia
-1 Client Affardability 1.749 2.895 5.208 279 0.873
-1 Client Cantact Details 2015 3.582 11.651 3.389 1.471
-1 Client Search 1.112 2179 5.05 1.98 091z
1 EHL Menu 0.937 1.93 4545 1.723 0.851
-1 Login 1.407 1.407 1.407 1.407 a0
1 Logoff 1.171 2.401 4.482 2 EBS 1.335
| Open Client Address Search 0.0# 0.06E 0.351 0.062 0.051
1 Open Emplay Search 0376 0.574 4720 0537 0728
1 Registration Hew Loan 1.62 2817 4,982 271 0726
1 Search Employer 0.408 1.012 2694 0.6a7 055
-1 Search Postal Code 4,592 5256 7899 4.795 0.811
1 Select Employer 0.784 1.585 4,482 1.417 0.784
1 Submit Offer 0.8 1.778 4.404 1.645 0.803
-1 "Who |z Emplayer 2.207 3618 8,715 3432 1.325
6

Copyright © 2009 Micro to Mainframe

Capture Details — 20 Users

Baseline Testing

Average Transaction Response Time

MICR®

to mainframe

36

34 |

32

30 4

28

25

24

72 4

20

18 4

16

14 4

Awerage Response Time (seconds)

i

4

. '/U e

{

o
00005006080803088

{&M"M
2#%‘33 883 8508
0 I?—o-—o—o—l-A-A

<& o

T
05:00 10:00 15:00

20:00

25:00

30:00

T
35:00 40:00

Elapsed scenario time mm:ss

45:00

50:00 55:00

Color Scale

keasLremant

Client Affardability
Client Contact Details
Client Search

EHL Menu

Lagin

Logoff

Open Client Address Search
Open Emplay Search
Registration Hew Loan
Search Employer
Search Postal Code
Select Employer
Submit Offer

Wiho | Employer

Copyright © 2009 Micro to Mainframe

Graph's MinimumGraph's Average Graph's MarimunGraph's Median Graph's Std. Devia

26
3942
1.924
1.585
1.662
1.574
0.057
0.656
24597
0611
5.25
1.185
1.563
2047

4.147
5.521
2117
2.333
1.921
2496
0.096
0.373
4.222
1.034
11.803
2.453
2.562
5.511

11.151
1247
5.37
2778
2145
2797
0181
1.649
9699
1.891
36.209
4.252
3716
9.985

3867
5.075
.07
2. 256
2124
243

0.09

0.375
2834
0.331
10.2

2.344
2375
5142

1.286
1.325
0.694
0.445
0.216
0.685
0.01
0134
1.225
0.207
E

077
1.121
1.293

Capture Details — 50 Users

Baseline Testing

Average Transaction Response Time

MICR®

to mainframe

Awerage Response Time (seconds)

EI-I

gofoooos

00:00

T T T
01:00 02:00 03:00

T T
04:00 0500 08:00
Elapsed scenario time mm:ss

0&:00

T
09:00

11:00

12:00 13:00

Color Scale

i
L

keasLremant

Client Affardability
Client Contact Details
Client Search

EHL Menu

Lagin

Logoff

Open Client Address Search
Open Emplay Search
Registration Hew Loan
Search Employer
Search Postal Code
Select Employer
Submit Offer

Wiho | Employer

Graph's MinimumGraph's Average Graph's MarimunGraph's Median Graph's Std. Devia

2.082
2.66
1.271
1.033
1.03
5.244
0.052
05
0984
0567
4.68
1.046
1.243
2928

2.72
3.683
1.918
1.597
1.41
5.244
0.07
0.723
2.586
0.724
28.574
1.417
1.561
2.521

3.997
5.413
2746
231
1.8595
5.244
0133
1.129
2713
1.07
115.04
2.356
2317
4.926

2613
3624
1.874
1.579
1.404
5244
0.062
0632
2639
0702
20042
1.328
1.529
2474

0.402
0523
0.238
0.231
0133
]
n.o1a
0113
0.553
0103
35.033
072
0202
0433

The degradation in performance from 1 to 50 users can clearly be seen. With 50 users the system
eventually crashed. The advantage of the baseline tests are graphs with limited measurements where the
problem transaction can be easily identified. If this was run with other scripts and numerous other

measurements, isolating the problem could have been really difficult.

These results were available early in the project and justified the importance of the performance testing
immediately. Looking good early on helps to gain respect and trust from the right people for the rest of the

project.

Copyright © 2009 Micro to Mainframe

MICR®

Baseline Testing to mainframe

The next example shows the importance of having monitoring in place during the baseline testing. In this
example a search function caused the system to crash with 30 users. The requirement was to have a
successful 1000 user test at the end of the performance testing. The time saved by running baseline tests
for each individual script on this specific project was enormous. Problems as the one in the example were
identified in 3 out of 7 scripts. If all the scripts were run together and with load, finding and isolating the
problems responsible for the system crash would have been very difficult and time consuming.

The 30 user test for the search function failed when the users received time-outs as can be seen on the
graph below. The graph shows the transaction response times with the running users.

Running Users vs. Average Response Time (users left axis, response times right axis)

Running Vusers - Average Transaction Response Time
- * s - 95
- 50
E a5
- 80
25
E 75
3 =2
o 70 :
| 65 o
20] S
. E 60
5 . &
2 SR
z Es0 S
= g c @
E 15 C 45 -
£ E 40 3
= 35 o
1 3
10 E 30 =3
=
E o5 @
o - 20
5 =15
- 10
o =t : : : ey . . T r : = et 0
00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 05:00 06:30 07:00 07:30
Elapsed scenario time mm:ss
Color Graph Scale M easurement Graph's MinimumGraph's Average Graph's MarimunGraph's Median Graph's Std. De
-Flunning Wuzers |1 Fun 0 13667 30 15 10,258
B verage Transal Find 13.652 38,764 89,704 33.041 24929
P &verage Transacl Login 0.104 0.22 0.413 0216 0,088
-.ﬁ.velage Tranzacl Srch-Tran 0.041 4.921 94,7 0132 20893
Awverage Tranzacl Wiew Audit Trail 0.075 0.094 0129 0.0ea oo
I =r=0= Transacl View Primary Info 0.562 5633 29543 0.74 10,699
Average Tranzacl Wiew Trangaction History 0.092 12393 B7.923 012 23523

The system resources showed very high CPU usage on the application server when users performed the
search function. The graph below shows the CPU utilization of the application server as well as the
database server during the 30 user test that failed. Note the low CPU usage on the database compared
to the application server

Copyright © 2009 Micro to Mainframe

MICR

Baseline Testing to mainframe

Running Users vs. System Resources (users left axis, CPU percentage right axis)

Running Vusers - Windows Resources
)
+ E 90
@
o =1 P X
! ! . L 30
e—" F 75
T &
- 70
E 65
" F 60
5 b e &
o 55
=] £
= E50 =
—
2 Ly ©
2 @
= e 40]
= [
= 3
F 30
E o5
- 20
F 15
10
E 5
@
b 0
0 T T T T T T ; T ;
00:16 00:32 00:48 01:04 01:20 01:36 01:5202:08 02:24 02:40 02:56 03:12 03:28 03:44 04:00 04:16 04:32 04:48 05:04 05:20 05:36 05:52 06:08 06:24 06:40 06:36 07:1207:2807.44
Elapsed scenario time mm:ss
Calor Graph Scale teasurement Graph's MinimumGraph's Average Graph's MaximunGraph's Median Graph's Std. DevMachine Name Monitar Type
I P unning Yusers 1 Fiun 0 13667 an 15 10,258 M8, MAs,
windows Resour % Procezzor Time [Proceszor _Totall10.182.198.170.438 4492 93439 ano9 22148 10182193116 Windows Resou
-Windows Resoul % Processor Time [Processor _Totall10.182.198.450.195 0631 1.052 0621 0.216 10182198.45 Windows Resou

Resource monitoring helped to identify the problem quickly. As in the first example, these results could be
reported on early and meaningful results were distributed soon after the start of the testing effort. The
importance of having monitoring in place at all times is highlighted once again.

Summary

With numerous successes as shown in the examples above, baseline testing has proven itself as an
essential part of the performance testing process. The time saved by finding and isolating problems early
on is enormous. Showing good, meaningful results early on a project has many advantages. It highlights
the importance of performance testing and showing the improvements when problems are fixed make the
rest of the project a very positive experience.

Include baseline tests in your planning and leave enough time for this. Do it properly, don’t take any
shortcuts. The benefits are great and when the actual load testing begins, the system will already perform
well. You will also know the system well by then and will be able to see changes in trends or performance
immediately. This makes the testing just that much better and you a better performance tester.

10
Copyright © 2009 Micro to Mainframe

