
A Lucky Shot at Agile?

A Tester’s Tale of Agile Adoption

This paper describes life as a tester in a team of agile rookies: the context - a

major healthcare IT company—and what agile did and didn't do for us. It

describes the practices we adopted successfully, but also highlights mistakes and

missed opportunities. Was our first shot at agile just a lucky shot or one that

proved the value of agile methods?

Copyright ©2009

BY ZEGER VAN HESE

SENIOR TEST MANAGER

CTG BELGIUM

Contents
1. Introduction..3

2. Goal ..3

3. The Context..3

3.1. The Customer ..3

3.2. The Assignment ...4

4. The Problem...5

5. The Trigger...6

6. The Start ...7

7. The Agile Momentum (Sprint 1-8) ..7

8. The Agile Reality Check (Sprint 9-12)..10

9. The Aftermath ..11

10. Hits & Misses...11

10.1 Hits ...11

10.2 Misses ...14

11. Conclusion..16

12. Selected References ...17

A Lucky Shot at Agile?

3

1. Introduction
As professional test consultants, we boldly go where destiny takes us. Or where

the customer needs us, depending on which way you look at it. In our line of

work, job content and work environment are things that are mostly beyond our

control. Most assignments are challenges in one way or another, but once in a

while a project comes along that is a really different—in a good way. A project

that forces you out of your comfort zone. One that lets you experience both sides

of the development spectrum, from waterfall style to agile development. These

projects can mean a major change in testing mindset as well.

What do you do when an opportunity like this presents itself? You grab it with

both hands, and don’t look back. Well, actually, I am looking back now. I was

lucky enough to be a tester on a project like this, a while back. And although

tales of agile adoption are now pretty common, a couple of years ago there were

not that many resources available about the subject. Our whole team was new to

agile, which meant “learning by doing,” all the way.

2. Goal
This paper describes life as a tester in a team of agile rookies: the context—a

major healthcare IT company—and what agile did and didn’t do for us. I will

describe the practices we adopted successfully, but also highlight mistakes and

missed opportunities. Was our first shot at agile just a lucky shot or one that

proved the value of agile methods?

3. The Context

3.1. The Customer

The customer in question was a fairly big player in Healthcare IT by the name of

Agfa HealthCare. Agfa is Europe’s 10th largest software vendor—44th world-

wide—and provides diagnostic imaging and healthcare IT solutions: radiology

information systems (RIS), hospital information systems (HIS), picture archiving

and communication systems (PACS) and appointment scheduling software, to

name but a few.

Agfa became ISO 13485:2003-certified1 in 2006, which basically meant that

most procedures, tools and processes were already well established and that no

additional action was needed to set up the test environment:

n A document management system with electronic approval workflows for

all deliverables (Livelink)

n A bug-tracking tool (Rational Clearquest and an in-house developed tool

called Qfindings)

n A test Management tool (Quality Center)

n A requirements management tool (Requisite Pro)

A Lucky Shot at Agile?

This paper
describes life as a
tester in a team of
agile rookies: the
context—a major
healthcare IT
company—and
what agile did and
didn’t do for us.

4

3.2. The Assignment

I started my test assignment at the Agfa HealthCare Scheduling department in the

fourth quarter of 2005 on a project called IPlan—an intuitive, completely cus-

tomizable web-based solution that allows hospital staff and healthcare providers

to manage appointments quickly and easily. With IPlan, multiple resources can be

planned across different departments, or appointments can be scheduled over

longer time periods, for example in medical technical departments. It can be used

by the hospital’s central booking department and the entire hospital staff, but also

by healthcare providers making referrals from outside the hospital. Patients bene-

fit from improved pre-exam information, shorter waiting times, optimized

appointment schedules and reduced hospital stays. The core of the application is

the scheduling engine, which calculates possible appointment solutions taking

into account optimal resource usage and constraints, both clinical and resource-

related.

The main task I was given was basically “Test! Make sure that it works and is of

high quality”. Actually the second part of the expression could well be the result

of some embellishment of my part—it’s been a while. This may not sound too

challenging but initially there was enough to worry about. It was the very first

release of this new product, on a new platform that was quite unique within the

company. The product was meant to replace the—hugely successful but not very

user friendly—household scheduling brand in the long term, so we felt as if the

future of scheduling was lying in our hands. I deliberately say our hands, since I

was sharing my plight with a full-fledged verification team.

Agfa was by no means a barren testing wasteland. During the preceding years, a

strong testing culture had developed within the company. There were quite a

number of professional testers distributed over several business units. It was a

50-50 mix of external test consultants and ‘native’ Agfa employees. Our verifica-

tion team consisted of seven testers, who divided their time between different

projects. Three of us were considered the designated IPlan testers, but the actual

number would vary when the workload in other projects got higher. I found

myself alone more than once during the course of the first three major releases.

At the time, the team’s development life cycle was pretty much sequential. We

approached testing according to the V-model where possible. We prepared our

scripted tests upfront while design and coding was ongoing. During the coding

phase there were frequent internal releases, but these builds were not vertically

integrated. As a result, we could only start testing newly developed features once

they were completely finished.

The main release milestones were the following (Figure 1):

n Pre-alpha release: the first release delivered to testing. A release that is

not feature complete but installable and (relatively) testable.

n Alpha release: the first release that is feature complete

n Beta release: a stable, feature-complete release ready to be tested at pilot

sites

n Release candidate: a first releasable candidate

A Lucky Shot at Agile?

The main task I was
given was basically
“Test! Make sure
that it works and is
of high quality”.

5

Figure 1: Release process

4. The Problem
In the year and a half after the start of my assignment (November ‘05 till June

’07), there were three major releases of the IPlan software. The verification

team’s testing approach worked—in the sense that we managed to control the

chaos at first. We were able to execute our manual tests, but the amount of tests

was exponentially growing as the application grew richer in content. By the time

the third release cycle was started, several issues came to surface:

n Hidden assumptions. There was an enormous backlog of use cases in

our requirements management system. There was a common agreement

within the team that this list was simply too large to implement in the

release, so only the use cases with priority ‘Must’ were going to be devel-

oped. We only used these specific use cases as input for our scripted tests,

which were well prepared in advance. It turned out that the developers

didn’t use the same input (Requisite Pro) as we did. They mainly based

their development on face-to-face talks with the product manager that we

didn’t know about. It was as if there was a built-in aversion against using

a tool. They regularly frowned when being confronted with the contents

of our bug reports—taken literally from requirements—saying “but where

did you get all this information?” They kept forgetting our answer. So

there were a lot of hidden assumptions floating around. Product manage-

ment thought we knew about the requirement changes, and we assumed

the developers used the use cases as primary input.

n Ever-changing requirements. The requirements weren’t very up-to-date,

and the updates that were done regularly occurred without us knowing. In

theory there was a synchronization tool in place between the requirements

system and the test management tool, which flagged all requirements that

were changed directly into Quality Center. In practice, we gave up on this

synchronization after a database restore reset all revision numbers and all

our tests and requirements kept being flagged as “newly updated”.

n Scope creep. Lower priority use cases were regularly upgraded to ‘Must’,

even after the first “feature-complete” alpha build. That meant features

were developed of which we weren’t aware. Most of the time we stum-

bled upon them by chance.

n No test automation. There was no test automation in place. No commer-

cial test tools were available. An in-house automation tool was being

developed at the time but for other platforms than the one we were using.

Manual regression tests were our only option.

A Lucky Shot at Agile?

The verification
team’s testing
approach worked—
in the sense that we
managed to control
the chaos at first.
We were able to
execute our manual
tests, but the
amount of tests
was exponentially
growing as the
application grew
richer in content.

6

n Alpha release was not feature complete. The team didn’t want to miss

one of the first milestones, so we received an alpha build that was far

from complete. Some features weren’t fully finished until a week before

the release date. We couldn’t even perform exploratory testing on them

upfront since the few things that were present didn’t work at all. As a

result, the beta testing phase was virtually inexistent, which had a huge

impact on quality.

n Quality issues. The lack of proper beta testing resulted in sub-par quality.

At the end, even major defects were postponed to future releases.

n Delayed release. The release candidates turned out to be pretty unstable

due to regression issues. In the end, it took us 12 release candidates

before the final version was released.

Many of these issues were caused by poor communication between all parties

involved and the fact that the team adhered to the original planning, even when

the initial estimates were no longer realistic. Needless to say that in the end, the

whole team was frustrated. We had this very promising product and we somehow

felt that we were not unleashing its full potential.

5. The Trigger
In April 2007, in the midst of a frantic release process, our product manager

organised a ‘team summit’ for all developers and testers involved with IPlan. The

concept was new to us, but we liked the idea: a full-day of informative sessions

to get a better understanding of each other’s way of working. There was some

time foreseen for brainstorming as well. All this took place in a rural setting far

away from the office. It was a good occasion to reflect on what was going on

and to propose some improvement ideas. There were many, but one proposal

especially stood out from the rest. The team’s software architect had been inves-

tigating some agile approaches and thought that the team might benefit from a

methodology called Scrum (Figure 2). He described Scrum as an iterative incre-

mental framework for managing software development, as a possible wrapper for

our existing engineering practices. It could also be a way to improve communi-

cations and maximize co-operation in environments where requirements are rap-

idly changing. He proceeded to give us an overview of the common practices

and the predefined roles within a Scrum team2.

Figure 2: Scrum overview

A Lucky Shot at Agile?

The team’s software
architect had been
investigating some
agile approaches
and thought that the
team might benefit
from a methodology
called Scrum.

7

Practices:
n Customers and testers become a part of the development team

n Frequent (2-4 weeks) intermediate releases (“sprints”) with working func-

tionality. This enables the customer to get working software earlier and

enables the project to change its requirements according to changing needs.

n Transparency in planning (“sprint planning”) and module development

n Frequent stakeholder meetings to monitor progress (“daily scrum meeting”)

n No problems are swept under the carpet. No one is penalized for recog-

nizing or describing any unforeseen problem.

n Workplaces and working hours must be energized—“Working more

hours” does not necessarily mean “producing more output.”

Roles:
n Product owner. The product owner represents the voice of the customer.

He ensures that the Scrum team works with the “right things” from a busi-

ness perspective. The Product Owner writes requirements (typically user

stories), prioritizes them and then places them in the product backlog.

n Scrum master. Also known as the facilitator. He removes impediments to

the ability of the team to deliver the sprint goal. The Scrum master is not

the leader of the team (as the team is self-organising) but rather acts as a

buffer between the team and any distracting influences.

n Team. The team has the responsibility to deliver the product. A team is

typically made up of five to nine people with cross-functional skills who

do the actual work (design, develop, test, etc.).

We liked what we heard, since it seemed pretty easy to learn and it looked like it

required little effort to start using. About halfway through this explanation every-

one was already thinking about how we could make this work for our team. We

ended the day with a nice meal. By that time, some agile seeds were planted—

we only needed time for them to germinate.

6. The Start
Two months after the team summit, a post-mortem meeting was held to evaluate,

extract lessons learned, and formulate recommendations for the future. The gen-

eral consensus was that there was room for improvement and that things needed

to be different for the next release. Management had heard some good feedback

about our Scrum information session and was willing to let us try agile develop-

ment—with Scrum being the methodology of choice. And although becoming

agile is often perceived as an abrupt paradigm shift, the team’s resistance against

this drastic change was miraculously low. That didn’t come as a surprise, since

we already made the switch (be it mentally) months before. It was July 2007,

and armed with nothing more than the best intentions and a good deal of enthusi-

asm we braced ourselves for a wild set of sprints.

7. The Agile Momentum (Sprint 1-8)
The circumstances for the change were certainly right, organisation-wise: the rest

of the original verification team had in the meanwhile vanished into thin air:

A Lucky Shot at Agile?

Management had
heard some good
feedback about our
Scrum information
session and was
willing to let us try
agile development—
with Scrum being
the methodology of
choice. And
although becoming
agile is often
perceived as an
abrupt paradigm
shift, the team’s
resistance against
this drastic change
was miraculously
low.

8

some members resigned, others were transferred to another business unit. This

made the transition to one Scrum team a whole lot easier. The remaining testers

and the product manager were integrated into the newly named “scheduling

team.”

Our new Scrum team consisted of:

n 2 testers

n 3 developers

n 1 software architect (who took up the Scrum master role since he was the

original instigator)

n 1 Product manager (who took up the Product owner role; he also was the

project manager and team lead ad interim)

There was no office space available for the whole team to be co-located at first.

The developers were still located elsewhere, but within close distance. The prod-

uct manager did move in with the testers, which I think is a luxury not many test

teams can afford.

We organised daily Scrum meetings (“stand-ups”) from day one, which earned us a

fair share of odd looks from passers-by. The sight of men standing around in a

small circle while taking turns in talking and sipping coffee was quite unique back

then, it’s become more common. But the benefits were clear from the beginning.

There was instant communication going on. We knew what the developers were

working on; they knew where we were at. The product manager was also attending

most of the time, while it used to be very hard to reach him before.

The product backlog was assembled and some preliminary sprint planning took

place. The team figured that 12 four-week sprints would be enough to get the

job done (see Figure 3). The testers were not invited to this planning game, but

at the time I didn’t really mind because we had enough work on our hands.

No one wanted to rush anything, so the first four sprints were fully dedicated to:

n Analysis

n Complete code refactoring (moving configuration part and application to

a single codebase)

n Improving performance

n Improving memory usage

n Improving tracing and logging

There were good reasons for this approach. This would start us off with a clean

slate and it would also improve code consistency—things got a bit messy with

all these different developers implementing different modules over the years.

The priority of the testers in these four sprints was to get an automated test

framework up and running, which we thought was absolutely necessary to make

the incremental approach work. It turned out that the in-house developed test

automation tool that we were never able to use before—by the prophetic name of

triple A (Anonymous Automation Android or A³)—would be able to support the

IPlan platform with only a few minor changes. The tool was developed and

maintained outside of our team, but the responsible automation engineer was

very helpful and responsive. Within a day in sprint 1, we were making our first

automation scripts.

A Lucky Shot at Agile?

The team figured
that 12 four-week
sprints would be
enough to get the
job done.

9

Figure 3: Sprints overview

Triple A is a keyword-driven automation tool, which was ideal for us in the

given situation. The philosophy behind the tool was that even non-technical

users would be able to write scripts. So we could immediately start automating

tests without real programming knowledge. Technical know-how was only

required by the automation engineer that implemented the keywords. But it was

just as easy to add customized C#-scripts when we needed special features, e.g.

file operations such as comparisons or move/copy/delete. And we didn’t have to

wait for the first pre-alpha build either, we simply started creating a whole set of

regression scripts against the latest released version.

We did encounter problems while scripting. Lots of them. We needed developer

or automation engineer interventions regularly to be able to script actions on cer-

tain controls. But since the developers knew that the issues we encountered were

blocking, they were given absolute priority. By the end of the second sprint we

already had a well-balanced regression set of around 300 scripts. We ran these

scripts on the daily builds in full refactoring period, providing quick and valu-

able feedback. Refactoring ended with only 2/3 of the lines of code left, but per-

formance and stability had improved significantly.

The actual “new” development started in sprint 5. Still, no one from testing was

invited to the sprint plannings, which I found a bit strange considering the fact

we were all one team. When I mentioned this to the rest of the team they did not

deem it necessary since the subject matter was mostly technical. By sprint 7

everyone got tired of my asking to be included, and the testers finally became a

real part of the team. Not that we could contribute to any of the technical discus-

sions, but it was valuable for us since we were really involved now. We were

taken seriously and knew things first-hand instead of getting to know them inci-

dentally by hearsay. It was also valuable for the team since our presence resulted

in less misunderstandings and requests for clarification afterwards.

A Lucky Shot at Agile?

By the end of the
second sprint we
already had a well-
balanced regression
set of around 300
scripts. We ran
these scripts on the
daily builds in full
refactoring period,
providing quick and
valuable feedback.
Refactoring ended
with only 2/3 of the
lines of code left,
but performance
and stability
had improved
significantly.

10

Knowing the ins and outs of what exactly would be worked on in each sprint

made it possible to establish a certain routine in every iteration. In a sprint we

typically performed following tasks:

n writing new automated test scripts for—stable—functionalities developed

in the previous sprint

n launching our complete automated test set (regression + new features

added in previous sprints) regularly and analyzing the results

n exploratory testing on new features as they became available. This

approach enabled us to simultaneously explore and learn about the deliv-

ered software. It also gave the team an indication about the risk that was

present in the software

n writing and executing manual acceptance tests for the newly developed

features. We did this to have some coverage data for all new functionali-

ties, since there was no traceability between requirements and our auto-

mated tests

n finding and logging bugs

n taking part in sprint retrospectives

When a large enough room became available to accommodate all of us, we

didn’t hesitate and got co-located immediately. The testers didn’t have to rely on

meetings anymore to get critical information. The information was now floating

around, waiting to be picked up. Not much later a weird kind of euphoria kicked

in: we felt like we had a momentum going, we were really on a roll. We were

almost feature-complete, and these new agile methods really did make progress

visible. We delivered clear value at the end of every iteration. At the end of each

sprint, a validation session was organised for all stakeholders (application spe-

cialists, professional services). These demos were very well received.

8. The Agile Reality Check (Sprint 9-12)
Were we overconfident, hit by a false sense of security? I’m still not sure. What I

do know is that things changed after the first—feature complete—alpha build

was delivered. We weren’t able to keep the momentum going. Our newly

acquired Scrum habits started to fade away. Very subtly at first, but more appar-

ent later on.

Reality dawned upon us. For every agile practice we had embraced before, there

seemed to be another practice that was carelessly neglected or even abandoned.

The sprint planning meetings were no longer organised, probably since there was

no “new” development going on anymore. Stand-up meetings were no longer

held daily. After all, everyone knew that it was more of the “same old, same

old”: bug fixing and stabilizing, while testing was working to get some coverage

for the acceptance tests. The daily routine became a weekly routine, at best. The

retrospectives disappeared, too.

We were working towards a stable beta build, to get it tested at a customer site by

the beginning of the summer. Our product manager—who was also playing the

customer, project manager, and team lead roles—had a hard time finding a suit-

able pilot site. Most sites could not free up any resources with timing being close

to summer vacations. The customers that were available and willing turned out to

be not a good match content-wise. We wanted them to specifically test our new

A Lucky Shot at Agile?

We were almost
feature-complete,
and these new agile
methods really did
make progress
visible. We delivered
clear value at
the end of every
iteration.

11

features, and the proposed departments would only make limited or no use of

that part of our product. The result was that the beta release was postponed for a

month.

One potential pilot site finally agreed, but they demanded additional functionali-

ty, which the developers provided swiftly. After all, we were agile and that was

what agile was all about. And we had some extra time on our hands after the

beta was postponed. But we had lost a fair share of our agility when we started

giving up on some basic Scrum practices. We were coding again when we were

supposed to fix bugs and stabilize. We were embracing change a little too hard—

the new elements were not even incorporated in any sprint planning. Testing was

left out of the loop again. Developers were having a great time “being agile”, but

we just felt confused.

9. The Aftermath
At the time, the release for delivery seemed to trail forever. There were many

release candidates due to the fact that even in the very last days new functionali-

ty was being added and changed on demand of the pilot customer. Results of

such a practice could have been dramatic, but we eventually missed the final

deadline by only a month. No harm was done on the quality side: the automated

regression tests proved to be invaluable once more.

Looking back now, I think we did a pretty good job. Although the release date

slipped, the overall results were quite impressive. The software had never been

this stable, even the first internal builds were of an unprecedented quality. We

actually had achieved more with less. More quality, more stability, more features,

more satisfaction in less time and with fewer resources than before. The product

reached the desired quality and contained the features that were stated in the

project contract.

10. Hits & Misses
In moving from waterfall style development to Scrum, we had to adapt our style

quite radically. Some agile practices were easily picked up by the team, while

others never found their way into our work processes. Our attempt at agile was

certainly not agile by the book. Here are—in random order—some highlights

and practices we adopted successfully, but also our mistakes and missed opportu-

nities. This is our list of hits and misses—the good, the bad, and even the ugly.

10.1 Hits

n Quality

We had very high quality, from early stages on. We were able to improve

significantly on performance, maintainability and extensibility, not only of

the current version but also future versions. It was particularly striking that

our first pre-alphas were exceptionally stable; this had certainly not been

the case in the preceding years. I think the primary reason for this was that

we resisted the urge to start implementing new features as soon as possi-

ble, but invested the time and resources in an extreme makeover.

A Lucky Shot at Agile?

Although the release
date slipped, the
overall results were
quite impressive.
The software had
never been this
stable, even the first
internal builds were
of an unprecedented
quality. We actually
had achieved more
with less.

12

n Communication

The increase in communication played a major role in a successful

release. From the moment we started with Scrum, much more cooperation

and communication was going on. You could say that significantly more

time was now being spent in meetings, but at least we were forced to

speak up; there was no room for hidden assumptions.

n Test automation

We had a pretty agile test automation process in place. Daily builds were

created at the end of each day. The installation files were copied to our

automation server and a trigger file launched our automated tests, all

unattended. This proved to be a tremendous help. It ensured that the

refactoring went smoothly in the early stages, and gave us very quick and

valuable feedback about regression issues later on.

n Refactoring

I guess that every programmer has a list of things he would have designed

or coded differently for every project has participated in; this was no dif-

ferent with IPlan. Over the years, our original programmers had to make

some compromises in order to get releases out the door in time. These

compromises often took the form of less elegant or maintainable code.

While these compromises won developers time up front with a quicker

release, they cost us dearly in the long term, as it became harder to add or

modify features. While the benefits of refactoring might be clear to pro-

grammers, it is not easy to demonstrate the business benefits of reengi-

neering old code3. Rarely will a business have the luxury or willpower of

choosing refactoring over new development. But in our case they luckily

did, and it clearly paid off in the end.

n Continuous integration

From day one of the project, the team was able to put continuous integra-

tion into place. Our developers integrated their work frequently—usually

each person integrated at least daily—leading to multiple integrations per

day. Each integration was verified by an automated build, which detected

integration errors as quickly as possible and provided valuable early feed-

back for us. Without our automated tests and continuous integration, the

frequent releases would have created a huge manual testing burden.

n Simplicity

We kept things simple, honoring the principle ‘go for the simplest

approach that works’. As the agile manifesto4 states: Simplicity—the art

of maximizing work undone—is essential. We didn’t try to do more then

we had to. We didn’t engage in speculative planning, which usually just

means rework. We basically worked for the needs of the current sprint,

not for the sprints to come.

n Use of tools

We used simple tools that did the job—or developed our own ones when

other tools meant too much overhead.

r We created a wiki, where all project data was centralized: work instruc-

tions, how-to’s, test databases, a concise automation manual, etc. We

pointed to existing documents where possible to avoid duplication.

A Lucky Shot at Agile?

We kept things
simple, honoring the
principle ‘go for the
simplest approach
that works’. As the
agile manifesto
states: Simplicity—
the art of
maximizing
work undone—is
essential.

13

r We made good use of James Bach’s free tool Perlscript in support of

our exploratory testing efforts. Perlscript is great for input attacks, but

also to assess input fields really quickly.

r One of our developers created his own tool (aptly named TinySprint)

to be used for sprint planning, task planning, and burn down charts.

He decided to make one himself after other tools were just not doing

the job for us. He literally generated it in a day.

r We started using an existing automation tool—no investment was

needed. And the return was almost instant.

n Exploratory testing

We had used exploratory testing in the previous releases, but not as con-

scientiously and focused as we did now. Back then we used it when there

was some time left after our manual test runs, while now we used it as

our main testing approach. The exploratory testing showed us the unex-

pected, unpredicted, and emergent behavior that went hand-in-hand with

the system that was delivered. Our disciplined exploratory testing was an

effective way to gather and provide feedback to the team, not only about

finished features, but about work in progress as well.

n Validation session (“demo”)

The project stakeholders felt much more involved than before when we

started giving demo sessions at the end of every sprint. To make sure that

they would attend the demo, we deliberately planned it every month, imme-

diately after our Project Control Meeting, where we knew everyone would

be present. These were no “pretend-demos”, everything was really working.

These demos also acted as validation sessions for the validation team. The

benefits were clear: everyone knew what we were working on and what they

could expect from the end-product. They knew the state the application was

in at every point in time—transparency, also outside of the team. We saw

their genuinely enthusiastic reactions and knew we were doing a good job.

n Better feedback, faster delivery, less waste

As Elisabeth Hendrickson already pointed out in 2006, the key to becoming

agile is to adjust your practices with three key ideas in mind5. In retrospect,

without knowing these principles, we did honor them:

r Increase the rate of delivery. Implementing Scrum automatically increased

our rate of delivery. Internally, the deliveries were on a daily basis.

Externally, we delivered a tested and releasable product every four weeks.

r Increase the rate and quality of feedback. Try to shorten the feedback

loop—this is basically the time between when a programmer writes a

line of code and when someone or something executes that code and

provides information about how it behaves. Thanks to our automated

regression tests and exploratory testing, we were now having a feedback

loop in terms of days, while previously it was weeks or even months.

r Reduce waste. In Lean terms, waste is anything that does not add

value for the customer6. We reduced our number of byproducts signifi-

cantly. No scripted tests that weren’t used, no excessive or unmain-

tained documentation: we put everything that we deemed important

enough on a wiki, where we pointed to existing documents rather than

just duplicating. We did make a test plan, but it was a living document

with many links and sprint descriptions in the appendices.

A Lucky Shot at Agile?

Thanks to our
automated
regression tests and
exploratory testing,
we were now having
a feedback loop in
terms of days, while
previously it was
weeks or even
months.

14

n Agile enthusiasm

Our team was full of agile enthusiasts, probably because all members had

already switched to an agile mindset the moment Scrum was first introduced

to us. There was no organisational resistance to agility either. Needless to

say that this was an important factor in a smooth transition. We didn’t have

to invest any energy in convincing anyone of our new way of working.

10.2 Misses

n No user stories

Our requirements were not made in user story format. Our old (use case)

format was kept because of the huge use case backlog that was already in

the requirements database. We did search for an alternative to document

user stories in digital format but no suitable solutions were found at the

time. This was indeed a missed opportunity since user stories are general-

ly regarded as the agile way of describing requirements, much more than

use cases, because these often include details of the user interface. Including

user interface details causes definite problems, especially early in a new

project when user interface design should not be made more difficult by

preconceptions7.

n No unit tests

Unit tests are generally considered as a must in agile projects. We certain-

ly did not embrace that practice. I honestly do not know why there were

no unit tests in place. I asked the developers several times, but all I got

was an indifferent shrug and some mumbling about it being too late now.

This is another good example of the developer testing paradox8 in full

effect. The paradox is the following: how is it possible that the practice of

developer testing, which is so obviously right and so widely acknowl-

edged as beneficial, and which could improve software quality and eco-

nomics more than any other alternative, is still a rarity in software devel-

opment organizations?9

n Testing not involved in sprint planning up till sprint 6.

Although the test team was quickly integrated in the new Scrum team, we

were apparently not considered as full-blown team members. Sprint plan-

ning was something for developer and customer roles only, because they

didn’t want to waste our valuable time and slow us down with estimates

about development work and technical analyses. It took them six sprints

to realize that testers can also contribute in these sessions and that there is

a lot of crucial information to be found in planning meetings. The more

the whole team comes to a shared understanding of the work to be per-

formed, the better. Sprint planning meetings are about far more than just

identifying tasks and putting an estimate on each. Sprint planning meet-

ings are about discussing the work to be performed, understanding what

the product owner wants, how we might collaboratively deliver that and

how we can collectively address risks10.

n No test-driven development.

Test-driven development requires developers to create automated unit

tests that define code requirements before writing the code itself. The

tests contain assertions that are either true or false. Passing these tests

confirms correct behavior as developers evolve and refactor the code11.

A Lucky Shot at Agile?

Our team was full of
agile enthusiasts,
probably because
all members had
already switched to
an agile mindset the
moment Scrum
was first introduced
to us.

15

In order to implement test-driven development, a solid unit testing prac-

tice should be in place. The two cannot exist without each other. The day

the team decided not to make unit tests was also the day we gave up on a

potentially test-driven development cycle.

n Too many combined roles.

Our product manager found himself between a rock and a hard place; he

was combining several roles, often with conflicting interests. His principal

role was that of the product owner, but he was also the team lead and proj-

ect manager ad interim. We were promised a new project manager but it

was really hard to get one with the right qualifications for the job. This was

clearly not an ideal situation—it put a heavy strain on the product manag-

er’s customer duties, and also made him a biased project manager. The

slack in the final release for delivery could have been avoided if the project

manager was someone less partial. He wanted to accommodate the wishes

of the pilot customer while his main focus should have been a timely

release. This is logical—in his heart he always was a product manager;

project management was a role he only agreed to play for a short time.

The Scrum master was also a software architect and developer in the

team. He took on important development activities as well as representing

the team to stakeholders, facilitating Scrum activities and escalating

issues to management. He wasn’t able to put in as much development

time as he wanted to. His development activities suffered from this dou-

ble role. In hindsight, we needed a developer more often than we needed

a facilitator.

n Scrum and agile planning abandoned in last sprints.

We were a bit inconsistent when it came to agile conformity. In the begin-

ning, we adhered happily to all Scrum practices, but all our goodwill van-

ished into thin air once all original product backlog features were devel-

oped. With some very important stabilizing, bug-fixing and beta-testing

sprints left, we stopped having daily stand-ups, planning meetings and

retrospectives. We fell back into our old routine of assuming that every-

one knew what needed to be done and what everyone else was working

on. I think the majority of the team saw Scrum as a tool to only manage

pure feature development activities. But stabilizing and bug-fixing are

also development activities, and everything surrounding pilot site testing

and its follow-up should also be taken into account.

n Manual tests still used.

There’s truly a bit of overkill here. This is not considered agile at all, but

at the time we couldn’t establish any traceability between our automated

tests and our requirements coverage due to some technical restrictions in

the test management tool. We wasted precious time creating and execut-

ing these tests, but we needed some indication of coverage. We tried to

get the problem solved for months. It was only fixed long after the project

was finished.

n Embracing change is not equal to creating chaos.

We embraced change, but in the end we also created chaos when we were

supposed to consolidate and stay focused. We tried to stretch the limits of

agility by adding new features that were not even in the original product

backlog. Toward the project’s end there was no real sprint planning,

which meant there was no control over development activities anymore.

A Lucky Shot at Agile?

In order to
implement test-
driven development,
a solid unit testing
practice should be
in place. The two
cannot exist without
each other.

16

This gave way to some agile renegade behavior in the last sprints. Here’s

another missed opportunity: I think the release wouldn’t have slipped

without all those last-minute feature requests.

11. Conclusion
We started this adventure with the best intentions but with no agile experience.

Our software architect was the agile advocate that started it all. Everything hap-

pened very fast, without much preparation or training; there were only three

months between the first introductory Scrum presentation and the actual start.

This was mainly possible because it was the right time and the right place for

such an agile shift. We all wanted some kind of change, and implementing

Scrum seemed the right thing to do at the time.

The overall consensus was that we did a great job. We provided more for less.

Customer and stakeholder satisfaction were on a higher level than before. Yes,

we could have done a better job. Looking back, we missed several opportunities

to do better, but it still was an approach that worked for us in the given context.

Important here is the notion of context—context is everything. The fact that it

was beneficial to us in this context is no guarantee for future successes.

Were we agile? That’s a tricky and possibly senseless question. People usually tend

to get into the argument of trying to qualify a team as “agile” or “waterfall”. I’m

not getting into this argument—what matters to me is that it worked. I agree with

Naresh Jain on this: agile is certainly not about merely following a set of practices;

it is a culture or value system12. Our agile processes certainly weren’t agile by the

book, but a kind of real world semi-agile that fell into place quite naturally. We

didn’t necessarily follow all the right processes, but we changed the way we

worked in the right way to get a positive change out of it. It’s as Matt Heusser

said: “Agility is not yes-or-no; it’s more-or-less—and don’t let anyone tell you

otherwise”13.

One question remains: was our shot at agile just a lucky one? I’d like to answer

that with the 20th century existential philosophy of Jagger and Richards:

You can’t always get what you want
But if you try sometimes well you just might find

You get what you need

(M. JAGGER / K. RICHARDS, 1969)

We tried and eventually got what we needed, not all we initially wanted. It’s safe

to say that we were lucky, but I like to believe that we were able to push our

luck by providing a good agile culture and letting common sense prevail; by

resisting the urge to start implementing new features and sticking to refactoring

first. The creation of a solid and reliable code base was instrumental in the suc-

cess, as was the team. If we were successful, it was also because of the people,

not necessarily just because of the processes we used.

In a way I am sorry that we will not again experience the same enthusiasm,

excitement, and naïveté from our first agile adventure. Learning by doing all the

way. It was a great experience with excellent results for our customer.

A Lucky Shot at Agile?

We tried and
eventually got what
we needed, not all
we initially wanted.
It’s safe to say that
we were lucky, but I
like to believe that
we were able to
push our luck by
providing a good
agile culture and
letting common
sense prevail; by
resisting the urge to
start implementing
new features and
sticking to
refactoring first.

17

12. Selected References
n Wikipedia on Scrum (http://en.wikipedia.org/wiki/Scrum_(development))
n Mountain Goat Software on Scrum (http://www.mountaingoatsoftware.com/scrum)

n Perils and pitfalls of agile adoption, Matt Heuser (2006)

n The Agile Manifesto (http://www.agilemanifesto.org/principles.html)
n Elisabeth Hendrickson—Agile QA/testing (2006)

n Alberto Savoia—The developer testing paradox (2005)

n Zeger Van Hese—Software testing—profession of paradoxes? (2007)

n Joe Lax—Make time to refactor (2002)

n Mike Cohn—Advantages of user stories for requirements (October 2004,

InformIT Network)

n Poppendieck, M. & Poppendieck, T. (2003)—Lean Software Development

n Mountain Goat Software—Better together (July 2006)

n Wikipedia on Test Driven Development (http://en.wikipedia.org/wiki/Test-
driven_development)

n Naresh Jain, Managed Chaos—Agile mythbusters (2007)

1 ISO 13485 is an ISO standard, published in 2003, that represents the requirements

for a comprehensive management system for the design and manufacture of med-

ical devices.

2 Wikipedia on Scrum

3 Joe Lax, Make time to refactor (2002)

4 http://www.agilemanifesto.org/principles.html

5 Elisabeth Hendrickson—Agile QA/testing (2006)

6 Poppendieck, M. & Poppendieck, T. (2003)—Lean Software Development

7 Mike Cohn—Advantages of user stories for requirements (October 2004, InformIT

Network)

8 Alberto Savoia—The developer testing paradox (2005)

9 Zeger Van Hese—Software testing—profession of paradoxes? (2007)

10 Mountain Goat Software—Better together (July 2006)

11 Wikipedia on Test Driven Development

12 Naresh Jain—Managed chaos—Agile mythbusters, 2007

13 Matt Heusser—Perils and pitfalls of agile adoption, 2006

A Lucky Shot at Agile?

Backed by over 40 years’ experience, CTG provides IT solutions and services to help our clients use technology as a

competitive advantage to excel in their markets. CTG combines in-depth understanding of our clients’ businesses with a

full range of integrated offerings, best practices, and proprietary methodologies supported by an ISO 9001:2000-certified

management system. Our IT professionals based in an international network of offices in North America and Europe have

a proven track record of delivering high-value, industry-specific solutions. CTG serves companies in several industries and

is a leading provider of IT and business consulting solutions to the healthcare market.

More information about CTG is available on the Web at www.ctg.com.

For more information about

CTG’s Testing Services,

please contact:

Zeger Van Hese

Senior Test Manager

CTG Belgium N.V./S.A.

Woluwelaan 140A

B-1831 Diegem

Phone : +32 (0)2 720 51 70

Fax : +32 (0)2 725 09 20

E-mail: zeger.van_hese@ctg.com
Mobile : +32 (0)497 45 95 94

www.ctg.com

