 Parameterization in Load Runner

About LoadRunner:

 Load runner is a load testing tool used for Performance and Stress test by test engineers. It was released by Mercury Interactive which is now under HP software https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17^8_4000_100__.

Loadrunner has VUGen component for recording and generating scripts to be automated for performance test with virtual users.VUGen records a script for one user and the same can be used in setting the scenario for multiple users in Controller.

VuGen, when recording a script, simply listens to the client (browser) talking to the server (Web server) and writes it all down. The complete transcript of everything that was said, the dates and time, content, requests, and replies can be found in the Recording Log (for Single Protocol) or Generation Log (for Multiple Protocol). The script is an easier to read version of this. The main difference is that the script only contains the client’s communication.

What is Parameterization?

If you imagine that VuGen is an impersonator pretending to be the client (browser), the script tells VuGen what to say to the server to successfully fool it. You want the server to believe that VuGen is a real client, and thus send it the requested information.

This script has the hard-coded information of the original conversation (Browser session) that occurred between the client and server. This hard coded information may not be enough to fool the server during replay however; it may have to be correlated.

Parameterization is where the script is modified so that some of the hard-coded values in the script are no longer hard-coded. Rather then sending the original value to the server, we may need to send different values.

For example, the original recorded script may have included the server sending the client a session identification number, something to identify the client during that particular session. This Session ID was hard-coded into the script during recording.

During replay, the server will send the client a new Session ID. You need to capture this value, and incorporate it into the script so you can send it back to the server to correctly identify yourself for this new session. If you leave the script unmodified, you will send the old hard-coded Session ID to the server. The server will look at it and think it invalid or unknown, and so will not send the pages that have been requested. Replaying a script with an old Session ID will not successfully fool the server into believing it is a client.

Parameterization is the capturing of dynamic values passed from the server to the client and back. You save this captured value into a parameter, and then use this parameter in the script in place of the original value. During replay, the replay engine will now listen to what the server sends to it, and when it makes requests of the server, send this new, valid value back to the server; thus fooling the server into believing it is talking to a real client.

[image: image1.png]Record

Request Page A"
Response "Page A", 1D=123"
Request Page B, 1D=127"

Client Web Server

Replay (before correlation)

. Request”Page A"
QI Response "Page A", 1D=456"
L Request Page B, 1D=123"

e

&
A

What errors mean I have to Parameterize?

There are no specific errors that are associated with Parameterization, but there are errors that could occur because a value has not been correlated. For example, if an invalid Session ID is sent to a Web server, how that server responds depends on the implementation of that server. It might send a page specifically stating the Session ID is invalid and ask you to log in again. It might send an HTTP 404 Page not found error because the requesting user did not have permissions for the specified page, and so the server could not find the page.

In general, any error message returned from the server after the script makes a request that complains about permissions can point to a hard-coded value that needs to be correlated.

What values in the script need to be correlated? The simplest answer is “Any value that changes between sessions required for the script to replay.”

A hypothetical example

You are logging onto a website. When you send the server your user name and password, it replies with a Session ID that is good for that session. The Session ID needs to be correlated for replay. You need to capture this value during replay to use in the script in place of the hard-coded value.

Functions for Parameterization
There are three functions that you can use for Parameterization:

	Function
	Description

	web_reg_save_param

	This is the latest function with some extra features for a more powerful usage. The syntax is as following:

web_reg_save_param (“Parameter Name” , <List of Attributes>, LAST);

Each of these parameters is a pointer to a string. That means that if they are entered as literal text, they need to be enclosed in quotes, with each parameter separated by a comma. The supported attributes include LB (Left boundary), RB (Right boundary), RelFrameID, ORD, Search, SaveOffset, SaveLen, and Convert. These attributes can appear in any order because they contain within them what they are. Detail information about each attribute can be found on the function reference online.

	Web_create_html_param

	Both of these functions are for backward compatibility only. It is recommended that you use the web_reg_save_param function. If you need to use this function for some reason, please refer to the function help reference.

	Web_create_html_param_ex
	

A list of all the three functions, along with documentation and examples, can be found in the on-line documentation. From VuGen, go to Help (Function reference (Contents (Web and Wireless Vuser Functions (Parameterization Functions.

Automatic Rules Parameterization (Record)

To record with the Rules Parameterization mechanism, follow the steps below.

1. Enable auto-Parameterization.

a. Enable the auto-Parameterization option in VuGen’s Tools menu, under Recording options (Internet Protocol: Parameterization. Click on “Enable Parameterization during recording” to turn on the feature.

b. (Built-in Parameterization) Indicate the servers to which you want to apply the Parameterization rules. Select the checkboxes adjacent to the server names to enable the rules for that server. To enable specific rules within a server group, click the plus sign to expand the tree and select the desired rules.

c. (User-define rule Parameterization) To add a new rule to an existing server, select one of the existing entries and click “New Rule.” Set the properties for the rule in the right pane.

d. Set the option on how you want the recorder to behave when there is a dynamic value matching the rule being detected. The available options are

· Issue a pop-up message and let me decide online .Perform Parameterization in script

e. Record the script

Correlation Studio (Replay)

Very often, you will notice that not all the dynamic values are correlated with the use of Rules Parameterization. This is likely to happen when you are recording against a session on an unsupported application server whose context is not known, and you cannot determine any Parameterization rules.

To handle this, the Web protocol comes with the Correlation Studio, where after running the script; it will automatically compare the server’s response for record and replay, to look for dynamic values for Parameterization. The list of differences will be reported to you, for you to choose the ones to correlate.

To invoke this feature,

1. Run the script once.

2. After the run, you will see the following pop-up alert prompting for “Scan Action for correlation.” Click on “Yes” to start the scan.

[image: image2.png]Scan Action for Correlation

Would you ke o scan the current acton or corelations?

Note: s recommended to scan for possibl corrlstons whenever you oy the scton.

Yo can scan for corelatons late by selecting Vuser>Scan Action for Corelations
CH+FE

I~ Donitdisplay tis message again

3. During the scan, the Correlation Studio will automatically compare the record and replay response for dynamic values and report the differences to you. You can see the dynamic values that are detected on the lower panel, under the “Correlation Results” tab.

4. Look through the differences reported by the Correlation Studio. Correlate the values on those necessary. To make the Parameterization process easy, you can choose the option to correlate them either one at a time (Correlate) or all at once (Correlate All).

Note: Parameterization Studio often reports all the dynamic values, including those where you do not need to correlate. Because of this, Mercury recommends you to use the Correlate option, and look at the value to correlate one at a time.

5. In general, you will need to repeat steps 1-4 a few times, before you can correlate all the dynamic values. The Parameterization Studio is not likely to report all the differences with just one run because your script is prone to fail on a very early stage. This causes the subsequent dynamic values to go undetected.

Manual Parameterization
Steps to Perform Manual Parameterization
1. Record two copies of the script with the same business process and data:

a. Record a script on the desired business process and save it.

b. Record another copy of the script, repeating all the steps as in step 1a. As much as possible, during recording, enter the same values in both scripts, for example, user ID, password, and fields and edit selections.

2. Identify the values to correlate with the help of the WinDiff tool:

a. From the second script, go to Tools (Compare with Vuser, and choose the first recorded script.

b. WinDiff will open and display the two scripts side by side. It will automatically highlight the lines with differences in them, showing the differences in red. (If not, go to Options (View (Show inline differences.)

c. Locate the first difference, take note of it, and search the script open in VuGen for that difference. That is the original value hard-coded into the script that was different in the second script. Highlight it and copy it.

Note: Differences like "lr_think_time" can be ignored. They are pacing functions, and do not represent data sent to the server.
[image: image3.png]'WDiff

Fie Edt View Splt Options Inio Help

MEIE

CWINNTAPrfesson Do Ponadtach S nleCoreionz Ao

[CAWINNT\PoliessongDeskiop Prounetach SanplCorelaton\ton o

Winclude “as_web.h

actiont()
<

web_ur1(“astra.merc-int.con",
RL-http://astra.merc-int.con/",
argetFrane

esource=0",
ecContentType-text/htnl",
eferer=

napshot=t1.inf",
“Hode-HTHL" ,
LAST);

Differences like
“Ir_think_time"
can be ignored

web_subnit_data(“login.pperl”,
ion-nttp://astra.merc-int.con/login.pperl”,

argetFrane=",
ecContentType=text/htnl",
eferer-http://astra.nerc-int.cons",
napshot=t2.inf",

Correlate the
sessioniD

Nameusername-, ~Ua.
iane=] axd
‘Name=JSFornSubnit:
LasT);

web_url(“Sign0fF Button™
RL-http://astra.merc-int.con/uelcone .pperl?sign0ff=1

argetFrane:

Sapshofatd.inf™,
“Hode=HTHL",
LasT);

return 0;

Winclude “as_ueb_h"
action1()
<

web_url(“astra.nerc-int.con",

URL-http://astra.nerc-int.con/",

web_subnit_data(“login.pperl”,
Action-http://astra.nerc-int.con/login.pper

TargetFrame=",
RecContentType=text/htnl",
ttp://astra.merc
2.inf",

nt.con/”,

web_url("Sign0ff Butto

URL-http://astra.nerc-int .con/velcone . pperl?sign0ff-1'

d. Go to the Recording Log (for Single Protocol) or Generation Log (for Multiple Protocol) and place your cursor at the top. Press Control-F (CTRL+F) to bring up the Find window.

[image: image4.png]Findwhat [Vour Tex Herd

Ditection
Cup
& Down

™ Match Whole Ward Orly
I™ Match Case

I~ Begular Expression

Paste the value copied from step 2c and search downwards. You are looking for the first occurrence of this value in the Recording Log or Generation Log.

· If you do not find the value, verify you are looking in the correct script’s Recording Log or Generation Log. Remember you have two almost identical scripts here.

· If you find the value, scroll up in the log, and make sure the value was sent as part of a response from the server. The first header you come across while looking up the script should be prefaced by a receiving response. This indicates that the server sent the value to the client. If the value first appears as part of a sending request, then the value originated on the client side and does not need to be correlated, but rather parameterized. That is a different topic all together. The response will have a comment before it that looks like this:

*** [tid=b9
Action1 2] Receiving response from host astra.merc-int.com:80 (25/11/2002 12:04:00)[image: image5.png]&) Virtual User Generator - [SampleCorrelation.usr - QTWeb] HEIER
& File Edt View Inset Vuser Actions Tooks Window Help 151 x|
Jgeu[see- 8D mE|lpasnennr o Seozee |||

@ veoem | "Mode=HIML ", |
| Actont LAST)

| vuser_end

1r_think_time(5);

web_submit_data("login.pperl”,
"Action-http://astra.merc-int.com/login.pperl”,
"Method -GET",
"EncType=".
"TargetFrime=",
"RecContentType-text /html",
"Referer-http://astra.merc-int.com ",

“"Snapshot=t2.inf", ||
“Mode=HTML"
ITEMDATA,

"Name-userSession”, "Valu . 088456865 1DOADHF ApHDHE cDtcopfAttee ", ENDITEM,
"Name-username", "Value-jojo", ENDITEM,

"Name-password", "Value-mercury", ENDITEM,

"Name-JSFormSubmit", "Value-off", ENDITEM,

LAST) :

web_url ("SignOff Button",
"URL-http://astra.merc-int.com/welcome . pperl ?sign0ff=1",
"TargetFrame=",

"Resource=0", _'_l
K1}

[B) Evecution Log [8) Recording Loa | & Corelaion Resis

0 e =
" <td bgeolor=\"#66CCFF\" wid" =
tid-b9: DBG: InternetReadFile read 2250 bytes

x** [tid-b9 Actionl 2] Receiving response from host astra.merc-int.com:80 (25112002 12:04:00)

"th=\"125\" valign-\"top\"><img src-/Merc10-dev images /sun_swede.gif alt=Sun width-125 height-1"

20> \ra”

" <br clear>\rin"

" <form method-get action=login.pperl>\rin”

" <input type-hidden name-userSession value 088456865 1DOADHEApHDH cDtcepfAtL"

"ce>Nrn

" <center>\ran”

" <table border-0 height-140>\r\n" .
>

For Help, press 1. [Cots ne2d NS [WOMI

e. So, you have a value that is different between subsequent recordings, it was sent from the server to the client; this value most likely needs to be correlated. If the value is not different between recordings and not originating on the server and sent to the client then the value probably does not need to be correlated.

3. Manually correlate the script with the web_reg_save_param function.

After confirming that the first occurrence was part of a received response from the server, you need to figure out where to place the web_reg_save_param() function and what to put in it before creating the function

a. Where to place the web_reg_save_param function?

From the last step, you located the dynamic value inside the Execution Log. Pick up the text that is before the dynamic value. This text should remain constant no matter how many times you replay the script; highlight it and copy it. This is the text that will identify where to find the start of the value you are capturing.

[image: image6.png]) EvcuionLog [9) Recoing Log | £ Corelovon Resus |

-
he\"125\" valigne\"top\"><ing srce/Mercl0-dev/images/sun_swede.gif alt-Sun width=125 height=1" -
0> e

93088456865 1DQADHEABHDHE cDtCepEALL "
£
3>6nbsp: <boMember name</Font) \r\
tanrne
Cinput typestext neme-username values'' size=12>\rin"
<o\ra” -
<l ,l"

o b, post 1 -~ Lt T it T

Now, to identify the place to put the function, you need to replay the script once in extended log. To do this,

i. Go to the Vuser menu and select “Run-Time Settings.”

ii. Go to General:Log

iii. Select “Enable Logging,” “Always sends messages,” “Extended log,” and all the options under extended log.

After replay, go to the Execution Log and search for the text that you just copied from the Recording Log (for Single Protocol) or Generation Log (for Multiple Protocol). You should see a corresponding Action1.c() at the beginning of that line with a number in the brackets. That is the number of the line in the script where you need to put web_reg_save_param() function. The function should go right above that line in the script.

So, add a couple of blank lines to your script before the function at that line, and then type in web_reg_save_param(“UserSession”, but give it a name that means more to you than UserSession.

[image: image7.png]& Virtual User Generator - [SampleCorrelation - QTWeb] =] B3
& e Edh Vew Ineet Vi Actons Toos Windon e eI
JeE|sees 8D[mE|loaenennr o ooz ee &)

:,Kﬁ?;{"“ Ir_think_time(5); g
|® vuser_end

web_submit_data("login.pperl”,

"Action-http://astra.merc-int.com/login.pperl"
"Method -GET",
"EncType=".

"TargetFrame=",
"RecContentType-text /html",
"Referer-http://astra.merc-int.com ",
"Snapshot-t2.inf",

"Mode-HTML" ,

TTEMDATR,

"Name ", "Value-75893.0884568651DOADHEFAPHDH cDtcepfAttes ", ENDITEM,
"Name-username", "Value-jojo", ENDITEM,
"Name-password", "Value-mercury", ENDITEM,
"Name-JSFormSubmit", "Value-off", ENDITEM,
LAST) :

web_url ("SignOff Button",

KIN} __I__I

[3) Execuion Log |[3) Recarding Log | £ Conlation Resuts
ctionl.c(7): tooara =
ctionl.c </table>r\n
ctionl.c \r\n
ctionl.c </td>Nran L
ctionl.c </tronean
ctionl.c <tr>\ran
ctionl.c <td>\r\n
ctionl.c <table width="632" border="0" cellspacing="0" cellpadding="0">\r\n
ctionl.c <tr>\rin
ctionl.c <td bgcolor="#66CCFF" width="125" valign="top"><img src=/Mercl0-dev/images sun_s
ctionl.c wede.gif alt=Sun width=125 height=120> \r\n

e

o

TERTETS T
Information about <table border-0 height-140>\r\n

the line for <trosrin

corresponding <td> :Member name \r\n
action section <tr>\rin

KY]
For Help, press 1. Gt ned3 NS [WOMT

b. Identifying the boundaries for web_reg_save_param function.

i. Identifying the left boundary - The starting point to correlate.

Go back to the Recording Log (for Single Protocol) or Generation Log (for Multiple Protocol), highlight the text to the left of the dynamic value and copy it.

The amount of text you highlight should be sufficient so that it is unique in this reply from the server. It is suggested that you copy as much as possible without copying any special characters. This is shown in the Execution Log as black squares, and the actual character they represent is uncertain. After selecting a boundary, go to the top of the Servers reply, and press CTRL+F and do a search for that boundary. You want to make certain what you have selected is the first occurrence in the Servers reply. If it is not select, use more text to make it unique, or consider using the ORD parameter of the web_reg_save_param function. Once you have finalized the static text that represents the left boundary, copy it into the web_reg_save_param statement.

The function you will have so far would be

web_reg_save_param (“UserSession”, “LB=input type=hidden name=userSession value=”,

ii. Identifying the right boundary - The ending point to correlate.

You are now going to tell the replay engine how to identify the end of the value you are trying to capture, that is, the right boundary of what you are looking for. Again, look in the Execution Log and copy the static text that appears to the right of the dynamic value you are looking for. For example, let’s say the Execution Log contained the following:

… userSession value=75893.0884568651DQADHfApHDHfcDtccpfAttcf>…

Then, the example so far to save the number into the parameter UserSession would be

web_reg_save_param(“UserSession”, “LB=input type=hidden name=userSession value=”, “RB=>”,LAST);

[image: image8.png]& Virtual User Generator - [SampleCorrelation - QTWeb] =] B3
Gl Fie Edt View Inset Vuser Actons Jods Window Hep 15| x|
geusemo(8BaEpate(ennr o FHeozee||E]a]
oo [Finclude "as_web.h" |
9 heent
|® wuser_end ctioni()
(|

Wweh_reg_save_param("UserSession". "LB-input type-hidden name-userSession value

. "RB=>",LASTIE®

web_url ("astra.merc-int.com",
"URL-http://astra.merc-int.com ",
"TargetFrame=",
"Resource=0",
"RecContentType-text /html",
"Referer-",
"Snapshot=t1.inf",
"Mode-HTML" ,
LAST) :

1r_message ("\"Correlated UserSession=%s".lr_eval string("{UserSession}")):
1r_think_time(5):

web_submit_data("login.pperl”,
ttp://astra.merc-int.com/login.pperl”,
ET".

"EncType=".
"TargetFrame=",

K1}

[2) Evecuaion Log | [8) Recording Log| &) Conelation Resuls

ctionl.c(9): \r\n =
ctionl.c(9) </td>Nran
ctionl.c(9): </tr>\ran _
ctionl.c(9) <tr>\ran
ctionl.c(9) <td>\r\n
ctionl.c(9): <table width="632" border="D" cellspacing="0" cellpadding="0">\r\n
ctionl.c(9) <tr>\rin
ctionl.c(9) <td bgcolor="#66CCFF" width="125" valign="top"><img src-Merc10-dev/images /sun_s
ctionl.c(9): wede.gif alt-Sun width=125 height=120> \r\n
ctionl.c(9) <br clear>\rin
ctionl.c(9): <form method-get action=login.pperl>\rin
pctioni- g <input type-hidden name-userSession value-75893.088456865 DURDHEApHD!
1 EAttefy\rn

ctionl.c(9)
ctionl.c(9
<

For Help, press F1 [7 Ns [NOM|

CERTET T
<table border=0 height=140>\r\n _J:
>

Note: In choosing a right boundary, make sure you choose enough static text to specify the end of the value. If the boundary you specify appears in the value that you are trying to capture, then you will not capture the whole value.

4. Replace the hard-coded value in the script with the parameter.

Once you have created the parameter, the next step is to replace the hard-coded occurrences with the parameter. Look through the script for the original value. Where you find it, delete the value and replace it with the parameter. Note, only the value you want replaced is deleted. The characters around it remain.

Example:

Change:

"Name=userSession", "Value=75893.0884568651DQADHfApHDHfcDtccpfAttcf", ,

 To:

"Name=userSession", "Value= {UserSession}", ENDITEM,

…

[image: image9.png][SampleCorrelation - ATWeb]

=1 E3

5\ ag“ Vuser Actions Tools Window Help =181 x]
JeE|sees 8D[mE|loasnennr o ooz ee ||s]
— |

[® vuserint
|® action
|® vuser_end

"RecContentType-text /html",
"Referer-",
"Snapshot=t1.inf",
"Mode-HTML" ,

LAST) :

1r_message ("\"Correlated UserSession=%s".lr_eval string("{UserSession}")):
1r_think_time(5):

//session: 75893.088456665 IDOADHEAPHDHEcDtcepFAttef
web_submit_data("login.pperl”,
"Action=http://astra.merc-int.com/login.pperl".
"Method -GET",
"EncType=".
"TargetFrame=",
“RecContentType=text/html",
"Referer=http://astra.merc-int.com/",
"Snapshot=t2.inf",
"Mode=HTML" |
ITEMDAT:
"Name-userSession”, "Valu

UserSession}", ENDIIE]

T = oo -
"Name=password", "Value=mercury", ENDITEM,
"Name=JSFormSubmit", "Value=off", ENDITEM,
LAST) ;

//session: 75893.088456865 IDOADHEAPHDHEcDtcepFAttef
web_url ("SignOff Button",
"URL-http://astra.merc-int.com/welcome . pperl ?sign0ff=1",
"TargetFrame=",
"Resource=0",
"RecContentType-text /html",
“Referer=http://astra.merc-int.com/login.pperl?7userSession={UserSession}susernan:
"Snapshot-t3.inf",
"Mode-HTML" ,
LAST) :

return 0;

ojospassword

erc

For Help, press F1.

[Cozt et

NG |

WM |

At this point, you are ready to run the script to test if it works, or if it needs further Parameterization, more work on this Parameterization.
Summary

That was a lot of looking through the logs and checking of values. Let’s just recap what you have done. You have identified a value that you think needs to be correlated. You then identified in the script where to place the statement that would ultimately capture and save the value into a parameter. You then placed the statement, and gave the text strings that appear on either side of the value that you are looking for so that it can be found.

The flow of logic for this is the Parameterization functions tell the replay engine, what to look for in the next set of replies from the server. The replay engine makes a request of the server. The server replies. The replay engine looks thorough the replies for the left and right boundaries. If it finds them, what is in-between is then saved to a parameter of the name specified.

Remember, the parameter cannot have a value until after the next statement is executed. The Parameterization statement only tells the replay what to look for; it does not assign a value to the parameter. Assignment of a value to the parameter does not happen until after generating request to the server and looks in the reply. If you have a case where a Parameterization statement is followed by a function that attempts to use the parameter, the statement is in the wrong place, and the script will fail.

This is always incorrect:

web_reg_save_param(…);

Web_submit_data (… {Parameter}…);

In-between the two, there needs to be a request of the server that causes it to reply with the value you are trying to capture.

When you are done with the above, the next step is to replace the hard-coded occurrences with the parameter. The script is then ready for replay.

_1099737703

_1099738172

_1099738614

_1099736327

