
Making Sense of Data Management on Intelligent Devices

The demand for embedded devices is growing 
rapidly, and there is a clear need for development of 
advanced software to deliver new features on limited 
hardware. Data management is a critical component 
in these new software systems. Embedded databases 
are used by portable media players to store 
information about music and video, GPS devices to 
store map data, and monitoring systems to log 
information. These and other leading-edge industries 
have learned the importance of managing data 
reliably with a relational embedded data 
management system.

Developers face unique challenges when designing 
and implementing software for custom embedded 
hardware. Embedded processor architectures, such 
as ARM, PowerPC, Atom™, each have unique 
characteristics. Footprint and performance are 
especially important, and access to source code for 
all software components is required for customization 
and portability.

To meet these requirements, embedded developers 
have often relied on custom solutions, using flat file 
formats to store data. However, increasing hardware 
capabilities make it possible to store more 
information on embedded devices than ever before. 
Fast read and write operations, protection from data 
loss and corruption, and multi-user access have 
become important requirements for embedded 
systems. Flat files are not able to fully address these 
issues.

Design Considerations for Embedded Data 
Critical performance demands: Embedded devices 
operate under strict time constraints. Whether to 
satisfy impatient users or to keep up with a constant 
stream of incoming sensor data, performance is 
always important.

Fail-safe reliability: Embedded systems are subject 
to failure from unexpected power loss and other 
crash scenarios. If such a situation occurs during a 
write operation, data may be lost or even corrupted. 
Redundancy is necessary to ensure reliability.

Sharing data between concurrent tasks: Modern 
embedded systems are connected and intelligent, 
performing several tasks at once and often sharing 
data between those tasks. Locking primitives, such 
as mutexes, are cumbersome to use directly in 
complex scenarios.

Portability: The exact format of data in memory is 
determined by the processor architecture and the 
compiler. But platform-specific details, such as byte 
order, alignment, and structure padding, should not 
affect the format of data stored on persistent media, 
such as flash.

Embedded Relational Database
While each individual problem, in isolation, has a 
straightforward solution, it is difficult to address one 
requirement without compromising on the others. 
Just as saving data safely can limit throughput and 
the size of the data set, sharing access to the 
database complicates safe storage and also degrades 
performance. An embedded relational database 
management system (embedded RDBMS) provides a 
complete solution that carefully balances these 
requirements.

Embedded databases are used in a variety of 
applications, each with different requirements. To 
accommodate this, many options are available to 
control the behavior of the database:

• High performance read and write

• Main-memory and disk-based tables

• Single-user, multi-threaded, and client/server 
access models

• SQL queries and direct table cursors

• Integrated C/C++ APIs and ODBC

What is an embedded database?
• An embedded database is a software library 

used by application developers to store 
data.

• The library adds database features to the 
application such as transaction logging, 
scalable index algorithms, and isolated 
concurrency.

• Unlike enterprise databases, an embedded 
database is distributed with the application 
and is not installed separately by the end-
users.

• Embedded databases are especially well-
suited for special-purpose devices and 
embedded systems with limited resources 
and a dedicated user interface.



Relational Model
In a running application, data is organized in data 
structures, such as classes, that reference each other 
directly, sometimes in a hierarchy, but usually in a 
complex network. However, direct references are 
difficult to maintain when data is stored persistently, 
especially if it is shared with other tasks that 
approach the data in a different way. Even small 
changes to the application can easily break backward 
compatibility. Porting to a new processor or operating 
system, or even changing the compiler, can raise 
unexpected problems.

Instead, relational databases organize data in tables, 
where related tables share common fields. In this 
way, relationships are maintained naturally and can 
always be used in both directions. Data is easily 
accessed through SQL queries and standard 
interfaces such as ODBC. And because there is a 
clear boundary between the representation of data in 
a working application and the representation used 
when that data is stored, changing the application or 
supporting another platform is a straightforward 
process.

Consistent, Scalable Performance
Embedded devices need consistent, scalable 
performance across all operations, whether reading 
or writing to the database. Indexes are used to 
efficiently search the database and traverse the 
relationships between tables. B+ tree indexes are 
optimized to minimize disk I/O, and offer consistent 
performance regardless of the size of the table, even 
with limited random-access memory. For tables that 
can fit entirely in main memory, T-tree indexes 
ensure that processor instructions are minimized.

Shared Access with Multi-user Connections
An embedded database can be shared between 
several concurrent tasks, and can present each task 
with what seems to be exclusive access to the data 
for a short time. By automatically locking individual 
rows as they are read and modified, the database 
enables tasks to safely work in different parts of the 
database in tandem, only pausing or moving on to 
other work when they would interfere with each 
other.

Whether an application needs no shared access to a 
database, access from several threads, or from 
several processes, embedded databases can 
accommodate each scenario, and the same 
application code can be used in all cases.

Database Recovery
When a sudden power failure or crash occurs while 
writing to a file, data corruption and inconsistency 
can result. To prevent corruption, embedded 
databases first write each change to a separate log 
file before modifying the database file. Using the log, 
incomplete changes can be rolled back to restore the 
database to a known good state.

If the database software uses write-ahead logging, 
also known as undo/redo logging, changes can be 
written to the database file either before or after a 
transaction is committed. This significantly reduces 
write operations without compromising data integrity. 
In this way, high-throughput tasks that frequently 
update the database can coexist with tasks that 
modify a large portion of the database at once.

Conclusion
Flat file formats are not robust enough to handle all of the problems that embedded developers will face as 
storage media continues to grow in size. A relational embedded database is a powerful and important tool in 
any embedded developer's arsenal. And while many off-the-shelf solutions are available, it is important to 
select a product that can fully meet your application's needs.

Some databases provide only basic functionality, with limited support for concurrency and mediocre 
performance in serious applications. Others are bloated with features that are unnecessary on embedded 
systems, requiring complicated installation procedures and consuming more system resources than the 
application itself. Starting with a solution that is designed to meet the requirements of embedded systems 
and devices has a significant impact on the performance, maintainability, and extensibility of the application.

ITTIA DB SQL is a pure relational database library that provides embedded applications with a single solution 
to the most important challenges of data storage. ITTIA DB SQL is fully functional, supporting write-ahead 
logging, B+ and T-tree indexes, complex multi-user shared access, and more. A variety of platforms are 
supported, and source code is available for porting to new platforms, customizing the feature set to minimize 
the already low footprint, or just for the assurance of having total control. With a high-performance relational 
embedded database like ITTIA DB SQL, application developers can focus on the business logic that makes 
each product unique.


	Making Sense of Data Management on Intelligent Devices
	Design Considerations for Embedded Data 
	Embedded Relational Database
	Relational Model
	Consistent, Scalable Performance
	Shared Access with Multi-user Connections
	Database Recovery

	Conclusion

