
Traceability Matrix as a tool for QA planning

Traceability of test artifacts as a QA planning and test selection tool
- Venkat Moncompu‡ and Sreeram N Gopalakrishnan±

Abstract: Rapid prototyping and development techniques combined with Agile development
methodologies are pushing the envelope on the best practice of testing early and testing often.
Keeping pace with the quick development turn-around and shorter time to market and being
adaptive to late changes in requirements requires effective management of quality process. The
use of traceability of test artifacts – test cases, test defects, test fixtures – mapped to the
requirements – needs, features, use cases and supplementary requirements – as a QA
scheduling and planning tool though mentioned in passing and claimed to have been practiced,
has been largely overlooked by the industry. This paper looks into such a possibility through the
use of a study for software that involves iterative application development practices and tries to
bring this aspect of using traceability as a QA management tool into focus.

Introduction:
In the recent times, many software methodologies have come to be classified under the hood of
“Agile Methodology.” These methods came about in response to the need for adaptive design
and development techniques as opposed to predictive techniques to meet the changing or
evolving user requirements and needs. Software development is not a defined process, at the
very least because the main inputs to the process activities are people. Agile methods are people
oriented rather than process oriented. Agile methods are iterative. Iterative development
techniques adapt to changing requirements by focusing on the product development with “good
enough” requirements. That said; there is still an element of planning involved per iteration where
a subset of the required features are broken down into tasks, estimated in detail, and allocated to
programmers.

Use case modeling is a very popular and effective requirements management technique. Use
cases capture most of the functional requirements of a software system. They describe the user
goals and the sequence of interactive steps to achieve the goal. Use cases are widely adopted in
iterative software development methodology such as the unified process and other agile
techniques which are iterative or evolving in nature. Verification techniques to derive test cases
from use cases are well established.[5,6] So planning testing cycles entails effective traceability of
test artifacts to requirements planned for the iteration. Though the emphasis in agile development
is on people than on process and on working software over comprehensive documentation and
responding to change than following a plan, a QA management process needs to remain nimble
to the changing and evolving needs and requirements.[7] This is precisely where the traceability
matrix can be leveraged to perform optimal QA activities that give the most value.

Agile Testing:
Agile QA Testing involves closer and tighter feedback within each cycle of iteration, defining
levels and types of testing in each cycle of iteration. So how can planning of requirements testing
work with iterations? User needs in an agile process are defined by a story (sometimes captured
as use-cases and features) planned to be implemented iteratively. Work break down for
development (in iterations) of these use-cases and features is defined in terms of tasks. As a
logical extension, the QA effort can also be tasked for planning and scheduling purposes.

The scope of testing in iteration, usually, is a set of unit and (build) acceptance tests to verify the
requirements and features planned for the iteration. The need for constant and continuous
regression testing is warranted as the software construction evolves and bugs get fixed, just as it
scopes the features and use-cases that go into the current iteration or development cycle.
Iterations, being time-boxed, do not wait for the exit or entry criteria to be met nor are they
predefined.

Draft version1.3 1 of 7

Traceability Matrix as a tool for QA planning

Agile testing leaves a lot of room for exploratory and ad-hoc testing that isn’t necessarily captured
in the use-cases and/or features (remember “just enough documentation to develop software”). In
agile methodology, the emphasis is on software construction rather than documentation unlike
the traditional waterfall model of software development. The two main premises of being agile
are:

1. Ability to welcome and adapt to requirement changes later in the development life cycle.

2. Testing often and testing early (in iterative cycles).

Apart from these two basic tenets, the other difference from a waterfall model is that the
requirements are never really “frozen” in development such that it becomes an entry criterion for
software construction phase. Prototyping is the key aspect of agile development technique that
helps in getting user feedback early and continuously in the development life cycle. This reduces
the ‘dreaded integration phase’ late in the software development phase minimizing the risk of
falling short of user needs or ending up with unfulfilled requirements. User acceptance tests serve
as exit (or acceptance of the build) iteration criteria and to measure progress (or burn rate) of the
project. So, in techniques such as feature driven development and test driven development, the
mapping of the features and use cases to test cases – traceability – serves as a valuable tool to
effectively plan and schedule testing just as features and cards are used to plan development in
iterative cycles. And just as use cases provide a user perspective for developers and designers;
testers have the onus of ensuring the software meets the user requirements adequately. This can
be effectively achieved by mapping test artifacts to requirements that are modeled as use cases
and testing the intended functionality independently.

Scheduling and Iteration planning:
The agile techniques for software development uses tasks in place of work break-down structures
referred in traditional project planning tools. To effectively understand the use of tasks and
planning of effort from a QA perspective, it is useful to break-down the QA work product into
iterations based on the features and functional specifications that are planned for the iteration.
Traceability matrices provide a very convenient way to ensuring the intended features are tested
and verified. This further provides valuable feedback to the project team (including the end-user
stakeholder) about the software construction progress. To be effective, therefore, it is important
that the traceability is mapped thoroughly making the features provided transparent to all
stakeholders. And for the QA manager, it provides a good substitute from “traditional” selection
criteria for regression and acceptance tests. It plays an important role in providing a basis for
statistical information such as burn-rates and velocity for the team management.

Multi-dimensionality of Traceability:
For the sake of clarity, a case study in the form of a traceability to map test cases relating to use
cases and features of a student registration system is discussed here. Consider a student-course
registration system. It should have the following features:

1. Users (Students, Registrar and Professors) should be able to register into the system.
2. Users should be able to create, update or delete their profiles and preferences.
3. Users (Students) should be able to register for classes and pay for courses enrolled in

securely.
4. Users (Students, Registrar and Professors) should be able to view the student transcripts

based on access restrictions.
5. Users (Registrars and Professors) should be able to create course offerings and the

system should provide a catalog of courses.
Now, as with any system of moderate complexity, the set of requirements can never be really
termed “complete.” And the process should be adaptive to the changing user needs. For the sake
of this example, these set of requirements would suffice, though. And a possible set of use cases
that can be identified for the system are:

No. UC ID # Title Brief Description

Draft version1.3 2 of 7

Traceability Matrix as a tool for QA planning

1 ST001
Student registers for a
course

Student searches the system to enroll for a
course. The system lists all course offerings
for which seats are available for the student
and accepts enrollment subject to payment of
fees.

2 ST002
Student drops out of a
course

Student is able to de-register from a course
that is he signed-up for. If the drop-off date is
passed, the student loses a certain amount of
the fee paid, otherwise, the entire fee (minus
a minimal operating non-refundable fee) is
returned/credited back to the student.

3 RG001
Registrar adds a course to
the system

The system lets the registrar offer a course to
students. Registrar searches for the professor
offering the course and updates the
information if the date is prior to registration
start date.

4 RG002
Registrar drops course
offering

The system lets the registrar remove a
course from the system prior to the drop-off
date.

5 PR001

Professor enters the
course details offered to
the system(registrar)

Professor specifies course timings, maximum
number of students and chooses classroom
provided by the system. The system tracks
available rooms against requested time by
the professor for the course. The system
creates dependencies to the course against
the maximum number of students and against
the student's course records to ensure pre-
requisites are met while registering for the
course.

6 ST003
Student pays for the
registered courses

Student uses the system to pay for the
courses registered for (checked-out) using a
secure payment transaction.

7 ST004
Student reviews course
history

The system shall allow the student to review
the transcripts and course grades for the
courses registered and completed. System
shall also show a summary of student-course
interactions during the last 4 years.

Table 1: Use Cases

The use cases descriptions define the main success scenarios of the system. However, not every
use case scenario ends in a success for the user. While elaborating the use-cases using the
descriptive text to capture these alternate paths, new aspects of the systems come to light when
exceptions are encountered (non-happy path behavior of the system is being captured).[1] Spence
and Probasco[8] refer to them as overloading the term requirements, a common point of confusion
with Requirements Management. These may not be clear from the user needs and system
features captured, but they are a very vital and essential aspect of the system behavior. To
ensure that the system meets these requirements and for coverage to be effective, these have to
be elicited clearly and traced completely. Alternate paths may also be captured using a usability
(scenario) matrix as seen in table 2. While the use cases are mapped against features (or cards)
which are planned for the iteration, so can the use-cases, the use-case scenarios that stem from
these and so on, cascading to the test cases (and test artifacts).

Flow
ID

Main
Success
Scenario Alt Flow 1 Alt Flow 2

Alt Flow
3

Alt
Flow 4 Alt Flow 5

Alt Flow
6

Draft version1.3 3 of 7

Traceability Matrix as a tool for QA planning

Flow
001

Course
search

Search
Fails

Misspelt/Mi
styped -
system
suggests
alternates

Flow
002

Professor
search

Search
Fails

Misspelt/Mi
styped -
system
suggests
alternates

Flow
003

Retrieve
transcript
history

No history
available

Transcripts
requested
are no
longer
available

Flow
004 Login

Wrong
credentials

Three
strikes and
session
times out
requiring
manual re-
verification
by the user

Passwor
d reset
request -
Hint
Question

Unable
to set
cookies
- login
failure

Flow
005

Course
registrati
on

Payment
gateway
failure

Insufficient
credit

Payment
gateway
authentic
ation
failure

Course
fee cost
split
across
multiple
modes
of
payment
- Debit,
Credit,
Loans

Courses
selected
locked-in
for
payment
over
phone or
on-
campus
visit

Seats
unavailab
le

Table 2: Usability Matrix

Note that the usage of the application flow, even though captured, could end-up varying the
application flow based on the data – for e.g. a student logging into the system would be provided
with a different set of features and screen flows compared to a professor who uses the system or
a registrar. Supplementary requirements corresponding to the architectural requirements for the
system cannot be mapped unless captured separately. These remain outside the functional
requirements modeled by the use cases as seen in the table 3 below.

 Req. ID Performance
Perf001 System shall be scalable to about 5000 users of the system at any given time

Perf002
System shall complete the external payment gateway transaction in 60 sec.
Otherwise the transaction should time out

 Security
Sec001 System shall allow users of the system to login securely
Sec002 System shall follow the thrice-a-strike-out rule for login credentials

Sec003
System shall request re-authentication at the time of beginning a payment
transaction

Draft version1.3 4 of 7

Traceability Matrix as a tool for QA planning

Sec004
System shall use a secure gateway to some supported third-party clients for credit
authorization on behalf of the student's credit application

Table 3: Supplementary Requirements

A sample list of business rules that have to be followed could be summarized as:

BR1: Students without pre-requisites defined for the course seeking to enroll in should be
prevented from trying to register i.e checkout the course.

BR2: Students checking out courses have to register within 2 working days from the time of
initiation checkout otherwise the seats shall not be guaranteed and released to the general pool.

BR3: If the courses are outside of the student's planned Major department, then such courses
will should require an advisor override and cannot exceed two(2) courses outside the major
program of study.

In the above case, when the mapping of the test case flows across functionality is carried, it
becomes evident that the granularity of detail falls short when mapping the coverage of the test
flows against the business rules as can be seen in the tabular representation below:

Based on the feature set as set out it is possible that any one of the flows used to ensure
coverage of business requirement 1 could as well serve for business requirement 2. However, on
closer scrutiny the test case flow that tests non-happy path scenario of business requirement rule
2 requires a further elaboration of the test flows against feature set. Such gaps and inadequacies
will come to light in a traceability matrix that is not granular and consequently, the test coverage
falls short.

Tracing every non functional, business and non-business requirement to test cases and
scenarios should increase the confidence and coverage of testing and QA activities that can be
performed. The usability flows and concrete test cases that cover the requirements and needs
can be formulated and with each iteration, targeted test cases could be identified to be run or
executed to address within the specific build. Traceability is really multi-dimensional and to be
effective QA artifacts, they have to transcend the various phases of the development process –
initiation, elaboration, construction and transition. Further, it has to be a “living” artifact, one that is
updated with each iteration.

Draft version1.3 5 of 7

Use case flows Flow 1 Flow 2 Flow 3 Flow 4 Flow 5 Flow 6 Flow 8 Flow 9 Flow 10 Flow 11 Flow 12 Flow 13 Flow 14 Flow 15
Search for a course X X X X X X X X

Keyword Search √ √
Instructor-based search √ √
Course Code Search √ √

Navigate to the course
College->Dept.->Program X X X √ √ √ X X X √ √ √ √ √

Check Availability √ √ √ √ √ √ X X X √ √ √ √ X
Register for a course

Sign in √ √ √ √ √ √ X √ √ √
Add to shopping cart √ √ √ √ √ √ √ √ √
Pay using

Credit Card √ X √
Debit Card √ X √
Send Me Bill √ X √

Logout √ √ √ √ √ √ √ √ √
Business Rule Mapping

BR1 √ √ √ √ √ √ √ √ √
BR2
BR3 √ √ √ √ √ √

Traceability Matrix as a tool for QA planning

Within iterations, a set of acceptance and regression tests have to be scheduled and performed
to meet the exit criteria. Features and stories (in the form of cards) are planned in iterations in an
agile methodology. With traceability matrix and mapping of the test cases to features, use cases
and defects, optimum test planning assuring the software quality within each build/release
becomes effortless and convenient.

By establishing effective traceability matrices, the tool helps to answer some of the following
questions apart from achieving the traceability of requirements to design and construction of the
software:

1. What test cases should be selected to run for the current build – verify fixed defects,
regression suite for the current fixes, apart from the base code smoke and build-
acceptance tests?

2. What impact does change in a specific set of non-functional and functional requirements
have on the QA testing process in arriving at test estimates?

3. How can defects identified be mapped to the requirements that the iteration was scoped
to achieve? And what surround testing and re-testing have to be carried out to validate
before the defects can be closed out or new but related ones identified?

4. What change requests were brought about by the most recent build or iteration and what
impact on quality does this new change entail?

Conclusion:
Establishing and maintaining traceability provides a hidden but valuable benefit – one of serving
as a tool for planning the testing tasks in the iteration during iterative development. Traceability
also establishes tracking back to the exact requirements being implemented in the iteration
improving coverage and confience in the quality process. This is of greater significance in agile
projects where requirements documentation isn’t complete as requirements continue to evolve
with each build or iteration. Agility ensures the process (and the product) is adaptive to changing
requirements and using traceability for QA activities ensures that verification keeps up with these
changes.

References:
1. Kurt Bittner, Ian Spence, Use Case Modeling, Addison Wesley, 2003.
2. Alistair Cockburn, Writing Effective Use Cases, Addison Wesley, 2006.
3. Dean Leffingwell, Applying Use Case-Driven Testing in Agile Development, StarEast

2005.
4. Dean Leffingwell, Don Widrig, Managing Software Requirements – A Use Case

Approach, Addison Wesley, 2003.
5. Jim Heumann, Generating Test Cases from Use Cases, The Rational Edge, E-zine for

the rational community, http://www.therationaledge.com/content/jun_01/m_cases_jh.html,
June 2001.

Draft version1.3 6 of 7

http://www.therationaledge.com/content/jun_01/m_cases_jh.html

Traceability Matrix as a tool for QA planning

6. Peter Zielczynski, Traceability from Use Cases to Test Cases,
http://www.ibm.com/developerworks/rational/library/04/r-3217/, 10 Feb 2006.

7. Brett Pettichord, Agile Testing What is it? Can it work?, www.pettichord.com, 2002.
8. Ian Spence and Leslee Probasco, Traceability Strategies for Managing Requirements

with Use Cases, Rational Software Corp. white paper, 1998.

About the authors:
Venkataraman “Venkat” Moncompu‡ works as a Project Manager for Intellisys Technology, LLC.
Having a Master’s degree in Engineering, he has over 12 years of IT industry experience having
worked in various capacities as a Developer, Solution Designer, Business Analyst, Project
Testing Coordinator and Project Manager.

Sreeram Gopalakrishnan± works as a Project Manager for India Intellisys Technology (P) Ltd.
Having a Master’s degree in Business Administration, he has over 12 years of IT industry
experience and is a certified PMP. Has experience working as a QA analyst, Business Analyst,
Practice lead and Project Manager.

Draft version1.3 7 of 7

http://www.pettichord.com/
http://www.ibm.com/developerworks/rational/library/04/r-3217/

