Relax, your code is reviewed!
Code review process that works even in real-life environments
Peter Gabris, Jan 2008
Bugs happen!

Software is written by mortals; mortals err. There are various categories and reasons of code defects ranging from typos through omissions going all the way to misleading documentation or even a wrong requirement.
The code review is one of many tools to help us rid the code of errors. While code reviews are labor intensive they are proven to be considerably more cost efficient than errors found in testing not to mention the cost of a bug in production software reported by a client.
There is more to code review benefits than the list of defects found. Many defects are found and fixed during the code preparation for the review. Code review provides an excellent learning experience for both the reviewer and the code author. The reviewed code is much better prepared for the maintenance and future expansion.

Code review is not a tool to judge programmers or reviewers. Hard code has more defects. Therefore, code review statistics are never linked to employee personal growth plans or to employee/team performance evaluations. However, serious bugs left in the code committed for the production deployment might be a free game.
Preparation for the code review
Author preparation
Code review is your rare opportunity to show off the code you are proud of. The better is the code the higher is the prospect that it will be diligently working for years without anybody ever seeing the smart way you did it.

Code review is not a substitute for professional, quality programming. The reviewer is not responsible for bugs left in the code. He/she will spend time and effort to help you and to add confidence that your work is up to standards and can be expected to perform well. Never submit the code for the code review before it is ready.

1. Make sure the code compiles.
2. Make sure the code passes all your bench tests.
3. If your development tool does include code review tools, use them. In Visual Studio go to Project Properties, Code Analysis, select the Enable Code Analysis on Build checkbox and recompile.

4. Make your code readable: Make sure the code is properly commented, indented and objects are appropriately named.
5. Remove all code pollution: remove your to-do comments, temporary comments and unused/commented-out code.

6. If your project includes modifications to an existing (production) code make a list of modified procedures and provide both the code before the change and the code with your changes.
7. Send requirement documents, architecture and design documents together with your code. If your code does not implement requirements exactly add your list of differences with explanation. Do not include lengthy email exchanges that document responsibility for the requirement changes. If you created code tests, send them too.
8. Read your code one more time before sending it for the review.

Do not wait with the code review request too long. If your project is bigger than a few hundredths or lines of code (LOC) it is certainly divided into some parts. Those parts and their interfaces are defined in design documents. Therefore, each code part can be reviewed right when it is finished. Asking for a code review early gives you the time to resolve issues between you and the reviewer without the embarrassment of involving anybody else.

The code does not have to be perfect before the code review. Yes, we asked you to do all in your powers to make it perfect; however, sometimes there are problems bigger than you. You can ask for the code review if you exhausted all the other options to get your code tamed. You can explain the problem and all the options you tried and ask for the code review. Just please never, never (!) ask for the code review of the broken code without telling the reviewer about the known bug.
Reviewer preparation
Make sure you have enough time to review the code properly. Take into account the size of the code, time the code took to develop, the amount of documentation. It is better to refuse the code review than to rubber stamp a risky code or to have the project testing or implementation waiting for you.

Do not plan to review much more code than 200 LOC in one session, nor a session to take longer than an hour.

Give the code enough time, even if this is just one line (usually a change). If the change implemented by the line deserved a project request it certainly does deserve your 5 minutes. Read the code trying to tell what it does. Then compare it with the requirement. Only after that read comments at the top of the unit to confirm the code, the requirement and the comment match. Use checklists (see below). Do not forget to look for missing things; those are hardest defects to spot.
If you do not see bugs, they might not be there. You are not supposed to turn in an expected yield of bugs; just to read the code diligently. On the other hand: do not forget that the more difficult code might naturally have more defects.
Do not be embarrassed if the author of the code is much more experienced than you are. A fresh eye comes always handy. You are going to learn a lot and you should not hesitate to ask questions. The answer will show if the thing you stumbled over is more useful to you or to the author.

Code Review Aspects
The following list of aspects the reviewer should be looking for is not complete; it could not be. Each platform, programming language, environment and application type has its own traps. This list is meant to inspire the reviewer only.
Readability

The code that is hard to read can easily hide dangerous bugs. Clarity of the code reflects the clarity of the author’s mind and his understanding of the problem. Coding standards can provide a good guidance. Coding standards violations should not get into the review – there is nothing to discuss. Send violations via email to the author, wait for the author to re-submit the code.
Frequently the project includes modifications to an existing (production) code. If that code is hard to read it is hard and risky to modify too. While it is not practical to rewrite the whole code, it is useful and efficient to clear and improve the program segment (procedure, function) we intend to modify. Instead of increasing the complexity of the segment it is usually better to split it into smaller segments, each serving a single well defined purpose. The time spent on such code clarification pays back on the time saved on the coding and testing changes and extensions.
Brevity is an important part of readability. Using the programming language features and separating repeated code into functions are tools to avoid verbosity. For example, the following code (a note about the code origin: nobody can see the log is his own code so I had to use somebody else’s speck. Luckily, I have no clue whose code it is. Moreover, I show it here because the copy/paste practice is nothing special):
 if ((11 - reader[0].ToString().Length) > 0)

 {

 finderNumber = reader[0].ToString().PadRight(11, ' ');

 }

 else if (reader[0].ToString().Length == 11)

 {

 finderNumber = reader[0].ToString();

 }

 else if (reader[0].ToString().Length > 11)

 {

 finderNumber = reader[0].ToString().Remove(11);

 }

 if ((15 - reader[1].ToString().Length) > 0)

 {

 acsid = reader[1].ToString().PadRight(15, ' ');

 }

 else if (reader[1].ToString().Length == 15)

 {

 acsid = reader[1].ToString();

 }

 else if (reader[1].ToString().Length > 15)

 {

 acsid = reader[1].ToString().Remove(15);

 }

 if ((10 - reader[2].ToString().Length) > 0)

 {

 locationCode = reader[2].ToString().PadRight(10, ' ');

 }

 else if (reader[2].ToString().Length == 10)

 {

 locationCode = reader[2].ToString();

 }

 else if (reader[2].ToString().Length > 10)

 {

 locationCode = reader[2].ToString().Remove(10);

 }

 // and so on..

Is much more readable as:
 finderNumber = StringToFixedLength(reader[0].ToString(), 11);

 acsid = StringToFixedLength(reader[1].ToString(), 15);

 locationCode = StringToFixedLength(reader[2].ToString(), 10);

 // and so on..

Just for the completeness, here is the function we extracted:

 string StringToFixedLength(string str, int length)

 {

 return str.PadRight(length).Substring(0, length);

 }

Structure

The structure of the code has to correlate to the coded algorithm. Basic structures are
1. Sequence,

2. condition,

3. loop,

4. procedure.

Statements in a sequence should have the same indentation and should be organized into logical groups by an occasional single empty row and perhaps a comment.
Case (select/switch) conditions should be used instead of multiple if-else conditionals if possible. Case (select/switch) conditions should not be nested nor contain other conditionals or loops. A conditional branch should not be longer than a half of the page (screen).

Loop conditions should be clearly visible at the loop initialization or exit. When the initial or final value of the loop counter is a result of preceding calculation, its name should clearly indicate where it comes from. The loop counter should not be modified in the loop.

A procedure should serve a single well defined purpose. The name of the procedure should clearly express the purpose. A name CalculateTotalSales states the purpose while a name LoopThoughArray is useless; it tells you what you can see from the code anyway. Side effects of a procedure should be obvious from the name, like ClearClientFormFields. Functions should never have any side effects. The length of a procedure should be shorter than a page with an exception of a sequence that could not be replaced by a loop or data.
Object should be declared / instantiated close to the place where it is needed. Some languages require declarations at the beginning of a unit - one more reason to keep units short. Object should be always created and discarded in the same procedure. Object should be discarded as soon as it is not needed.
Algorithmic soundness

1. The execution should be final: a loop exit should be guaranteed, recursion should backtrack. An exception is a message trap in service-like application. That should be guaranteed to yield the control frequently and predictably.

2. The function will always set the return value. The return value should be correct (as defined) for all accepted arguments. What will happen with corner-case input? Unacceptable arguments should be checked early and refused.

3. The variables used should be able to hold any acceptable value without a loss of accuracy. For example monetary values should not be stored as floating point.
4. Exceptions should never be used for expected. For example using an exception to leave a search loop when the item is found is sinful.
Maintainability

1. All errors should be handled. Resources should be released even if an exception or an error condition occurred.
2. Constants should be extracted, consolidated, properly named and placed at a predictable place (usually the top of the program unit, a configuration file or sometimes a specialized singleton).

3. Are all possible null pointers checked before use?

4. Could array indexes get out of bounds? Could a buffer overflow?

5. Could SQL triggers be avoided?
6. Are we using undocumented or deprecated features? Is that use properly commented? Are all workarounds commented?
7. What 3rd party products we depend on? (How comes this was not handled at the architecture phase?)

8. Do we need so many program units? (How comes this was not handled at the design phase?)

Efficiency

1. Can recursion be avoided?

2. Could SQL cursors be avoided?

3. Is the memory (including heap, stack and disk) used sensibly? Objects should not be duplicated if not necessary. What about non-parallel threads? Are pooled resources retuned as soon as possible?
4. Does the code alternate for an existing system/framework/library function without a proven need or advantage?
Security

1. Check all values coming from the user.
2. Never execute user input. For example, do not use user input to build a sql statement on-the-fly.
3. Encapsulation should be used wherever possible.

4. Where and how are authentication data stored?

Bug found, now what?
Record the exact place of the issue and note the character and severity of the issue. If you are not sure, ask the author. Remember: a question “What was the reasoning behind the deviation from the standards here..." is better than a question starting with why and much better than a statement. Even when you are positive the thing you see is a bad bug, it might be better to ask question.
There are a couple of things you as a code author can do with reviewer’s email:

1. Dodge, avoid or ignore it. This is the worst thing you can do.

2. Fix it, if you can. Ask your reviewer or somebody else if you are not sure how to fix the issue.

3. Explain to your reviewer the issue is not a defect. If the developer and the reviewer agree it is not an issue, comment the place in the code. If it was hard to understand to your reviewer, it might be mysterious also to the next programmer tasked to modify your code. If the developer and the reviewer can't decide between themselves if an issue should be fixed or not, then more people has to get involved. Bring in a manager, team leader or another experienced team member to decide.
Never answer your reviewer’s email with inserting your answers into his text; at least if you are neither his boss nor his parent. Leave hers/his message intact. If you need to quote her/him insert the quote into your text in quotation marks (after all, this is what they are for!)

Remember: the code review is about the code, never about a person!
Share the gain
Frequently the code review reveals a nugget of deeper knowledge. This gain should be shared with the rest of the team. The code author is better suited to break the news. It is a sign of your upbringing to give the code reviewer some credit.
Code is reviewed until it passes

Code isn't reviewed once and then forgotten. Any changes made have to be re-reviewed. Not reviewing all changes makes the process useless. The code author is responsible for all bugs left in the code. There are always defects that will sneak through the code review and through all tests. Adding to them an issue the code reviewer pointed out is a sin punishable by permanent loss of sleep.

Implementation strategy

Successful implementation of peer code reviews in organization has to overcome natural resistance. There are many reasons of the resistance: natural resistance to innovation, code ownership, people who are really overloaded with work and many others. And there are some professionally insecure programmers as well. Let’s list a few typical objections:

1. I (we) do not have time to do that. The production is waiting for the code. The deadline was yesterday. I have no tome to prepare the code for the review.

2. It’s not going to improve anything.

3. The process is too formal (or disorganized).

4. Code reviews are too new (or too old).

5. This is too costly.

6. The code (or the change to the existing code) is too big for review (or the change in the existing application is too small to require the review).

7. We do not have the right tool for code reviews.

8. Our code (language, platform, framework, methodology) is so special nobody can understand (or anybody can see it is correct even without a review).

9. I could not clean (or even fix) all the legacy code I am changing.

10. This is the best code I found on google (or in a textbook).

Taking care of the Programmer’s Ego

1. The programmer can select the reviewer. The team leader approves it and informs the project manager. Only in extreme cases can the team leader intervene in the reviewer selection. However, programmers will be asked not to stay with the same reviewer permanently.

2. Reviewer communicates his comments and concerns to the code author only. It is the code author’s choice to share the communication with anybody else.

3. Reviewers know their code will be up for the review one day as well.

4. Programmer is not responsible for the legacy code he-she is changing. However, the code should be improved by the change. That might require cleaning the immediate vicinity of the change and fitting the change technology and style to the existing code.

5. The message from the reviewer to the project manager says only that the code was reviewed.

6. Reviewers do not report their time spent on the code review into the project plan of the reviewed code. The time is reported to the general administrative and QA time pool.

 Time concerns and the size of the code

We ask programmers not wait with the code review request too long. One month of the coding work should be the upper limit where the project manager should inquire if the work with the code reviewer started. Each code part (as defined in the project plan) can be reviewed right when it is finished. We do not need to stretch the project plan by injecting code review steps. Code reviews are part of the coding process itself and occur during the process, not after.

Tools of the Trade

Code review can be done without any tool. However, a lot of time and effort can be saved by the right tool. The most popular, affordable and recommended general tool is CodeCollaborator by SmartBear Software.

Efficient version control system is necessary as well. The current market leader is Subversion in combination with TortoiseSVN. Both are free.

Code profilers and review tools depend on the programming language and development environment. Many can be customized according to the company coding policy.

Implementation steps

Project Managers

1. Familiarize yourself with the Code Review Process document

2. Read this document

3. Ask team leader of each project to name the code reviewer for each program (or program type) in the project

4. Accept the programming step 100% done only after you received the code review confirmation.

Team Leaders

1. Familiarize yourself with the Code Review Process document

2. Read this document

3. Ask team leader of each project to name the code reviewer for each program (or program type) in the project

Programmers

1. Familiarize yourself with the Code Review Process document

2. Make sure each programmer in your team had selected the code reviewer and the code reviewer accepted. If a single piece of code is developed by more than one programmer, only one code reviewer is needed.

3. Get ready to resolve disagreements between programmers and reviewers with a great diplomacy.

Management

1. Remember that your programmers are doing very demanding work. The requirements, tools, environment and methods evolve permanently and permanent learning is an integral part of their daily job.

