Automation for Internationalization

Meeting the Challenge

Jim Dougherty

Keith Haber

December 2003

The Challenge

Early in 2003 the LexisNexisTM testing organization was advised that a new international product was under development. A German localized version and an English-UK core version would be released in the application’s first iteration. Following this release, the company would be periodically releasing additional versions in French, Spanish, and Italian.

This presented a significant challenge to the organization. Potentially, each new language supported could multiply the number of test cases required to certify the product. Furthermore, the organization uses test automation extensively to maximize testing resources within the constraints of the release schedule. How could these scripts be built and maintained for a product of this scope and type?

What was needed was a means to achieve effective automation: test scripts that could be easily extended to support additional languages.

The automation tool is Segue SilkTest 6.0. The terminology used in the document regarding Window Declarations and Use Files are specific to that application but most assuredly have counterparts in other test automation tools.

The Investigation

A review of the engineering design documents verified that the development team was following the practices
 of I18N and L10N for Internationalization and Localization. All core version application code is separated from the information required to support the language adaptations. Language information is stored and accessed as required. With the language requirements separated from the executable, future adaptations for additional languages will require no change to the executable, only additions to the stored textual material specific to the language selection.

The new product was developed in JavaTM.

JavaTM and Resource Bundles

A study of the areas of JavaTM that benefit Internationalization reveal that the use of ResourceBundles and Properties files permit the distribution of the same executable worldwide, regardless of the Locale language.

This is made possible by the fact that the language values are determined at runtime. The core version of the application can be used with as many adaptations as desired; only the Properties files require change for language. No revisions to the core version of the application are required.

The Locale Object of JavaTM identifies a language and country. The ResourceBundle contains locale-specific objects, which include the values specified in Properties files. The system fetches locale-specific objects from ResourceBundles, which returns the locale-specific object that corresponds to the end-user’s Locale.

Here is an example of some of the key-value pairs found in the Properties files for the product under development:

English-UK

savedsearch.weekly.mon=Monday

savedsearch.weekly.tue=Tuesday

savedsearch.weekly.wed=Wednesday

savedsearch.weekly.thu=Thursday

savedsearch.weekly.fri=Friday

German – Germany

savedsearch.weekly.mon=Montag

savedsearch.weekly.tue=Dienstag

savedsearch.weekly.wed=Mittwoch

savedsearch.weekly.thu=Donnerstag

savedsearch.weekly.fri=Freitag

The JavaTM code refers only to the key value, such as savedsearch.weekly.mon, and the actual value to be displayed to the client is looked up at runtime.

For example, if a browser tells the application that it is German, the application receives a German Locale object. The application knows that it wants to tell the user that it’s Monday, so it uses the client’s Locale and the key value “savedsearch.weekly.mon” to get your word for Monday. The ResourceBundle finds the answer – “Montag” – which the application writes to the web page.

It follows then that for this area of the application, when the French iteration is created, there are no changes required in the core version of the application. What is required is an addition of a Properties file for French:

French – France

savedsearch.weekly.mon=Lundi

savedsearch.weekly.tue=Mardi

savedsearch.weekly.wed=Mercredi

savedsearch.weekly.thu=Jeudi

savedsearch.weekly.fri=Vendredi

There are other details involved, but this shows the fundamental concept: separation of language-specific code from the program logic.

Adopting the Method

Recognizing quickly that for the test automation to keep up with product development, what was needed was to use a similar approach where applicable: using a key-value pair paradigm to separate language-specific product details from the script code.

This makes it possible to create scripts to be run against the functionality of the core version and not having to duplicate scripts with hard coded translations. By so doing, the scripts created to test areas of functionality in the English-UK version of the application would run successfully against any of the language adaptations that followed.

The assumption was made that when the language was changed from the core version, the object names would be unchanged, assuming that the practices of I18N and L10N were adhered to as regards creating a stable, non-language sensitive core version, and providing text in Properties files to accommodate the language requirements.

An early version of the application in a stable test environment was available for experimentation and test. This version included the ability to change the language of the User Interface when required, which made it possible to test and develop our techniques for internationalizing our test scripts.

Implementation and Evaluation
Part I: Language-Independent Window Definitions

From long experience, the fact that one of the keys to making scripts maintainable is to separate the logic of the test cases from the details of the applications under test was readily apparent. When the marketing department decides that the front page should say "Sign On" instead of "Log In", there is no concern about updating dozens or hundreds of scripts. The changes to the scripts can be made in one place, and all of the scripts will continue to work. The mechanism for doing this is called the window definition. This is SilkTest's construct for mapping pages and page elements to variable names. Nearly all modern functional test automation tools have this type of functionality, so these techniques can be adapted to other tools.

Since window definitions are designed to separate script logic from the page details, we should investigate whether we can use them to insulate us from language details. It turns out that we can indeed do this, and so this is the first point at which script internationalization occurs. By using multitags and window ID tags, many aspects of the scripts can be made language-independent.

For example, consider a window definition such as the following:

window BrowserChild MySearch

parent Browser

multitag "My Search"

"Meine Suche"

"Ma Recherche"

"Mi Búsqueda"

HtmlPopupList DateRestrict

multitag "Restrict Date"

"Schranken Sie Datum ein"

"Limitez la Date"

"Restrinja la Fecha"
This definition tells the tool how to recognize a "My Search" webpage with a "Restrict Date" popup list. All scripts using this window definition will recognize MySearch.DateRestrict whether it appears in English, German, French, or Spanish.

Better still, many form objects have a Window ID property (denoted by a $ character in Silk Test; other tools will use their own means of identifying these properties) that does not change regardless of the language. Such tags are greatly preferred to multitags, as they do not need to be updated when a new language is added.

These tags are based on the code for the HTML form, and do not rely upon the current label or caption. Instead of the above, the Date Restriction popup list might be defined as follows.

HtmlPopupList DateRestrict

tag "$dateRestrict"

Regardless of whether a Window ID tag or a tag based on the caption is used, the scripts that use the window definitions will require no conditional logic to check for the current language.

For many form elements in the application under test, the language-independent Window ID tag was available for most form elements. Links rarely had usable Window ID tags, so multitags were used frequently for those elements.

Part II: String Filters for Dictionary Lookup

The proper use of window definitions provides an excellent start toward script internationalization; however, some aspects of the scripts cannot be handled in this way.

Using the above window definition code, a script author would use MySearch.DateRestrict.Select() to select a value from the popup list regardless of the language currently under test. There is a problem though: the popup list does not always contain English values. The immediate solution would be code such as the following:

testcase testDateRestrict (string language)

if language == "English"

MySearch.DateRestrict.Select("Today")

else if language == "German"

MySearch.DateRestrict.Select("Heute")

else if language == "French"

MySearch.DateRestrict.Select("Aujourd'hui")

else if language == "Spanish"

MySearch.DateRestrict.Select("Hoy")

//etc.

The script logic is not separate from the language details, so adding support for additional languages requires extra conditional statements at every affected testcase. This is poor for maintainability. What would be better is to use a key-value lookup approach similar to the JavaTM Resource Bundle technique used by the product itself.

Consider instead the following:

testcase testDateRestrict (string language)

SetTestcaseLanguage(language)

MySearch.DateRestrict.Select(translate("Today"))

The translate() function can be thought of as a string filter. The literal string “Today” is filtered through translate(), and MySearch.DateRestrict.Select() receives only the result of the translation.

The translate function might look like this:

private string currentTestcaseLanguage

const string i18nDictFile = "dictionary.ini"

string translate(string key)

// Open dictionary file

HINIFILE hDictionary = IniFileOpen (i18nDictFile)

// Read value from file

string sResult = IniFileGetValue (hDictionary, currentTestcaseLanguage, sValue)

// Close dictionary file

IniFileClose(hDictionary)

return sResult

Note that this implementation of translate is simplified for clarity, and does not do any error checking or logging as a robust implementation should.

The SetTestcaseLanguage function looks like this:

void SetTestcaseLanguage(string language)

currentTestcaseLanguage = language

It is a simple function that initializes a private global variable that all subsequent calls to translate() will use. When translate is called, it looks up the appropriate translation for “Today” in a separate file (a “dictionary” file) and returns its value.

The translate() and SetTestcaseLanguage() functions should be implemented and made available in a shared library.

The dictionary will be a separate file that looks something like this:

[English]

Today=Today

[German]

Today=Heute

[French]

Today=Aujourd'hui

[Spanish]

Today=Hoy

The above example is in .INI format, which was chosen out of convenience: SilkTest provides functions for handling .INI files (as many other automation tools do), so we were able to build these support functions quickly. Better from a non-programmer’s perspective would be a spreadsheet table that could be edited in Excel, such as a .CSV file, which is the format used in our current implementation. The .CSV file is easier to organize and maintain and is more practical for large files. Regardless of format, the essential idea is that all translations are clearly defined and separated into distinct language groups, allowing the script (and maintainers!) to easily locate the appropriate values.

Thereafter, if the current language of the script is English, the script will select “Today”. If the current language is German, “Heute” will be used. If French, “Aujourd’hui” will be selected. If an appropriate translation is not found in the dictionary, an error saying so should occur. It is very efficient to use the JavaTM properties file syntax for the keys, not the English values, this helps to avoid confusion, especially when the English value changes in the application.
This achieves the desired effect of separating the script logic from the language details. The script does not care whether the testcase is run in English, German, or French – so long as the window definitions and the translate() function understand English, German, and French, all is well.

Part III: Setting the Application Language

At this point, the desired language is specified and the correct values are ready to be looked up from the dictionary. Now the script has to make sure that the application is set to the right language. Otherwise, there is a good chance that the script will find values that are in the wrong language, and will raise errors. The code for this will be specific to the application under test, but it may look something similar to this:

void SetAppLanguage (string language)

MySearch.Preferences.Click()

Preferences.Language.Select(translate(language))

Preferences.OK.Click()

Better still would be to make SetAppLanguage a window method that can be adapted on a per-page basis. Changing the language on the Home Page might be easier than from the Order Confirmation page, for example. But as long as the script can set the app to the correct language, the script will be able to switch to the appropriate language to perform the correct test.

Now our testcase from above looks like this:
testcase testDateRestrict (string language)

SetTestcaseLanguage(language)

SetAppLanguage(language)

SetAppState("MySearch") // ensure that test starts at form

MySearch.DateRestrict.Select(translate("Today"))

Now scripts can be expected to work regardless of the state of the app when the scripts are started.

Part IV: Calling the Code

How does the script know which language to use? The language value must be an input to the testcase; in SilkTest, this comes from a test plan file. This allows the script to be easily reused with other languages. The test plan file in this case would contain something similar to the following:

Date Restrict -- English

testcase: testDateRestrict("English")

Date Restrict -- German

testcase: testDateRestrict("German")

Date Restrict -- French

testcase: testDateRestrict("French")

Date Restrict -- Spanish

testcase: testDateRestrict("Spanish")

// etc.

Note that the testcase function testDateRestrict is reused with different languages, with no further recoding required. Define the values to be translated as string variables at the start of the script. This can make debugging and reading the script code much easier. As long as the window definitions are language-independent and the dictionary contains the necessary values, the script will run in any of these languages.
The success of this approach to seamless internationalization is completely dependent upon the product behavior not being affected by language change. Any language-specific functionality must be addressed using language-specific test scripts.

Example

The example below is an enlarged version of the smaller example shown above. These are translations for certain aspects of the product windows that remain constant from window to window.

The Date widget on the search forms was one of these items. The content of this file bears a resemblance to the key-value pairs of a ResourceBundle.properties file except that the information is contained in a single file.

For our application, the Dictionary file contained items such as this:

 [DEUTSCH]

All available dates=Gesamter Zeitraum

Today=Heute

Previous week=Letzte Woche

Previous month=Letzter Monat

Previous 3 months=Letzter 3 Monate

Previous 6 months=Letzter 6 Monate

Previous year=Letztes Jahr

[ENGLISH]

All available dates=All available dates

Today=Today

Previous week=Previous week

Previous month=Previous month

Previous 3 months=Previous 3 months

Previous 6 months=Previous 6 months

Previous year=Previous year

Window Definitions, Object Naming and Creating Object Methods

To ensure there was an appropriate framework for this effort, and understanding that the key element of that framework would be the product Include file containing Window Definitions, Functions, Type Definitions, Constants and Global Variables, we began the creation of that file and the recording of the window definitions.

The initial review of the application windows we did was to confirm that the names assigned to the various elements in the windows did not change when the language was changed from English to German. The objects that were of concern were the Text Fields, Radio Buttons, HyperTextLinks, PopupUpList, ListBoxes, and Pushbuttons. If the object names were not language specific, we were certain that by using the techniques described above, we could devise an approach to the automation that would be extremely efficient.

It was noted that the object names were not language specific, and that there would be little to do in the way of hard coding for language.

One of the first scripts we created was a simple search against the Home search form. The intent was to enter search terms, accept the default dates, select a News source and then click the Search pushbutton to submit the search.

Additional functions in the script were designed to close browser messages that the application throws and to end the test by clicking the Browser Back button.

These scripts are capable of running equally as well against the German windows as it is in the English window. The Application State (appstate) for the script was used to handle the Login process and in this particular instance, set the language choice. This is now accomplished using the SetTestcaseLanguage(language) and the SetAppLanguage(language) functions.

Conclusions

At this point it was time to take stock of the methodology.

· Where were we in the development of the process?

· What did we have?

· How should we evaluate what we have and measure it’s effectiveness?

What we had was the Global include file, we had functions, types, variables and constants that could be put to use effectively to make scripted test cases “language proof”. Additionally, in the Global Include file were window definitions for the windows of the application under test.

Scripts could now be created for use in test plans that were identical in their functionality but which could be restricted to specific languages at runtime. The next task was to test the process to ensure our methodology performed as we predicted.

The process consists of creating test scripts in English for use in the various areas of the application being developed.

This application is an information resource, it has search forms in various areas of Business and News that permit the user to submit searches, to restrict those searches to specific sources and date ranges.

To summarize, the automation task was evaluated to determine what the requirements would be to create test scripts that would run against the core version of the application and be equally effective when run against the current German adaptation and any future adaptations for additional languages.

1. These scripts had to be successfully created without substantial hard coding for language changes.

2. Analysis of the application confirmed that for all windows, the object names of the core version remained the same when the user changed the windows to the German language.

3. Functions were created to set the test case language or restrict a plan file selection to a specific language.

4. A translate function was created.

5. A dictionary file was created to store the language specific text for all the selected languages.

6. Window definitions were then created for all of the application windows.

7. Each of the objects retained in the window definition was examined to ensure that the tag for that object was not language-specific and that the object identifier was “human readable”.

8. Added to the include file were “Use statements” which caused functions in other include files, specifically the include file that contains our dictionary lookup code, to run in test cases as though they were in the test case.

The automated test scripts created using this method run seamlessly against the application regardless of the language selected. Continual measurement of the effectiveness of this method will come from more extensive development of and use of multi-language scripts. Another measure of the effectiveness of this approach will come when testing for the French version of the application begins in early 2004.

Benefits Measured

Assume that a small automated test suite has the following conditions:

· Five testcases per language

· Each testcase averages 20 lines of code

· Each testcase averages 5 translations

The "Naïve" approach is to create a separate script for each language. The "I18n" approach uses the techniques described above (language-independent window definitions and dictionary lookups).

To illustrate the benefits of the internationalization techniques used, we can calculate the number of lines of code produced by each approach:

	Languages
	# Testcases
	# of scripts (Naïve)
	# of lines (Naïve)
	# of scripts (I18n)
	# of lines (I18n)

	L
	L * 5 = T
	T
	T * 20
	5
	(5 * 20) + (L * 5)

	1
	5
	5
	100
	5
	105

	2
	10
	10
	200
	5
	110

	3
	15
	15
	300
	5
	115

	4
	20
	20
	400
	5
	120

For each new language supported by the application, 5 lines of code are added to the hypothetical scripts in the i18n approach, but roughly 100 lines are added in the naïve approach – a new language-specific copy. The problem is shown more clearly in the chart below.

[image: image1.wmf]0

100

200

300

400

500

1

2

3

4

Languages

Lines of Code

Naïve

I18N

If we further assume that more code means more expensive maintenance, particularly when both implementations perform exactly the same tasks, then the sheer amount of code produced in the Naïve approach makes it clearly inferior and more expensive when more than one language must be tested. That means that it's less likely that additional languages will be tested adequately.

For only one language, internationalization is actually somewhat more work to implement. For more than one language, the choice is obvious.

Copyright 2004 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

� See list of organizations - � HYPERLINK "http://www.i18ngurus.com/docs/984977077.html" ��http://www.i18ngurus.com/docs/984977077.html�

PAGE
10

_1133096829.xls
Chart2

		100		105

		200		110

		300		115

		400		120

Naïve

I18N

Languages

Lines of Code

Sheet1

		Languages		Naïve		I18N

		1		100		105

		2		200		110

		3		300		115

		4		400		120

Sheet1

		

Naïve

I18N

Languages

Lines of Code

Sheet2

		

Sheet3

		

