
Best Practices for Software Projects - Risk Management

July 2004 - Pragmatic Software Newsletters

To deliver software on-time and on-budget, successful project managers understand that software
development is complex, and that unexpected things will happen during the project life cycle. There
are 2 types of risks that may affect your project during it's duration:

Risks you know about - There are many risks that you know about, that you can mitigate. For
example, let's assume that you have assembled a team to work on the project and one of the
stellar team members has already scheduled a 3 week vacation just before testing is scheduled,
which you agreed to allow. The successful project manager will identify this risk and provide
some contingency plans to control the risk.

Risks you don't know about - There are also risks that you don't know about, so a general risk
assessment must be done to build time into your schedule for these types of risks. For example,
your development server may crash 2 weeks into development and it may take you 3 days to get
it up and running again.

The key to managing risks is to build contingency plans for risk and to build enough time into your
project schedule to mitigate risks that you do not know about. Below are a list of the 5 most common
scheduling risks in a software development project:

1. Scope and feature creep - Here is an example: Let's say the client agrees to a requirement for a
Logon page. The requirement specifies that the client will enter their userid/password, it will
be validated and will allow entry upon successful validation. Simple enough. Then in a meeting
just before coding is commencing, the client says to your project manager "I was working with
another system last week and they send the client a report each day that shows how many
people log in each day. Since you have that information already anyway, I'm sure it will only
take a couple of minutes to automate a report for me that does this." Although this sounds
simple to the client, it requires many different things to happen. First, the project manager has
to amend the requirement document. Then the programmer has understand the new
requirement. The testing team must build test scenarios for this. The documentation team
must now include this report in the documentation. The user acceptance team must plan to test
this. So as you can see, a simple request can add days of additional project time, increasing
risk.

2. Gold Plating - Similar to scope and feature creep, programmers can also incur risk by making the
feature more robust than is necessary. For example, the specification for the Logon page
contained a screen shot that showed very few graphics, it was just a simple logon process.
However, the programmer decides that it would be really cool to add a FLASH based movie on
the page that fades in the names of all the programmers and a documentary on security. This
new movie (while cool in the programmer's eyes), takes 4 hours of additional work, put their
follow-on tasks are n jeopardy because they are now behind schedule.

3. Substandard Quality - The opposite of Gold Plating is substandard quality. In the gold plating
example, the programmer got behind schedule and desperately needed to catch up. To catch
up, the programmer decided to quickly code the next feature and not spend the time testing the
feature as they should have. Once the feature went to the testing team, a lot of bugs were
found, causing the testing / fix cycle to extend far beyond what was originally expected.

4. Unrealistic Project Schedules - Many new team members fall into this trap. Project members
(project managers, developers, testers, etc), all get pressure from customers and management
to complete things in a certain time frame, within a certain budget. When the timeframes are
unrealistic based on the feature set dictated, some unseasoned team members will bow to the

Page 1 of 3Best Practices for Software Projects -

Change Control

7/8/2004file://D:\Inetpub\wwwroot\Newsletters\newsletter_2004_07_SP_NoAd.htm

file://D:InetpubwwwrootNewsletters
ewsletter_2004_07_SP_NoAd.htm

Project Management Guidelines - http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

User Acceptance Test Release Report - http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

All Templates - http://www.PragmaticSW.com/Templates.htm

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

Software Planner - http://www.SoftwarePlanner.com

pressure and create their estimates based on what they think their managers want to hear,
knowing that the estimates are not feasible. They would rather delay the pain until later, when
the schedule spirals out of control.

5. Poor Designs - Many developers and architects rush the design stage in favor of getting the
design behind them so the "real" work can begin. A solid design can save hundreds of
programming hours. A design that is reusable, allows changes to made quickly and lessens
testing. So the design stage should not be rushed.

Calculating Risk

The key to successful risk management is to identify all risks you know about and build time in for risks
you do not know about. The mechanics of doing this is to simply list the risks, and figure out the loss
(in hours) you expect would happen if the risk occurs, and then list the probability of the risk
happening. Then you can factor that risk into your project schedule by multiplying the loss by the
probability.

For example, let's assume that you have decided to use a new outsourcing company to do some of the
coding for your project. Since you have not worked with them before, you surmise that there is a 50%
probability that you could incur 40 hours of additional development because of the new resource. You
would build 20 additional hours (40 hours * 50% probability) into your project plan to mitigate the risk.

Here is a template for calculating risks: Risk Management Template

Here is an example of using Software Planner to manage risks: Manage Risks with Software Planner

Using Online Tools

You can minimize project risk by using tools to help you track the entire software life cycle. There are
many solutions for aiding you in this process. For example, Software Planner
(http://www.SoftwarePlanner.com) has features that allow you to track all phases of the life cycle from
start to finish.

Software Planner also has a unique feature called the List Manager, where you can define a list of
information to track. In this case, you can create a Risk Management list and track your risks online.
To see how that works, see this movie.

Conclusion - Helpful Templates

As you can see, risk management is key to ensure that your projects are delivered on-time and on-
budget. Below are some helpful templates to aid you in developing software solutions on-time and on-
budget:

Page 2 of 3Best Practices for Software Projects - Change Control

7/8/2004file://D:\Inetpub\wwwroot\Newsletters\newsletter_2004_07_SP_NoAd.htm

http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.SoftwarePlanner.com
http://www.SoftwarePlanner.com
file://D:InetpubwwwrootNewsletters
ewsletter_2004_07_SP_NoAd.htm

About the Author
Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com). With over 20 years
of experience, Steve has extensive knowledge in project management, software architecture and test
design. Steve publishes a monthly newsletter for companies that design and develop software. You can
read other newsletters at http://www.PragmaticSW.com/Newsletters.htm. Steve's email is
steve.miller@PragmaticSW.com.

Pragmatic Software Co., Inc.
1745 Shea Center Drive
Suite 400
Highlands Ranch, CO 80129

Phone: 720.344.4846
Fax: 720.344.4847
Web site: http://www.PragmaticSW.com

E-mail: info@PragmaticSW.com

Page 3 of 3Best Practices for Software Projects - Change Control

7/8/2004file://D:\Inetpub\wwwroot\Newsletters\newsletter_2004_07_SP_NoAd.htm

http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.htm
http://www.PragmaticSW.com
file://D:InetpubwwwrootNewsletters
ewsletter_2004_07_SP_NoAd.htm

