
Automation testing project requirements
The writer is an independent consultant for automation testing in the fields of networking and J2EE
application. Guy_Arieli@hotmail.com. Tel: +972-54-7899446.

In the process of building new automation testing
project, understanding the requirements of the project
is very important. In this article I would like to define
and explain a set of requirements and design
considerations, I find common to most of the
automation projects.
There are new ideas like “Tests Configurations
management” and “SUT independent” that you might
find helpful in your project.
But in general this article target to be a baseline for
your project requirements document.
I target this document to functional system testing but
it’s applicable to unit and integration testing as well.
You can take it and add your project specific
requirements.
I hope it will help.

The main requirements (I call them “level 1
requirements”) order by there importance are:

• Maintainability
• Visibility
• Scalability
• Stability
• Simplicity

From every “level 1 requirement” you can associate
sub requirements. When I draw it, I got the following
map (don’t panic, it’s little frightening at the
beginning).

The direction of the connections implies on the
direction of the request. For example ‘Simplicity’
requires ‘minimal technologies’, the line will be from
‘Simplicity’ to ‘minimal technologies’.
You can change it to suit your project and your
understandings. You can add requirements remove
some and change add or remove the connections
between them.

Following are explanations for the map bullets:

Maintainability
The maintainability is the most critical factor in
automation projects. Most of the automation project
(especially project involving GUI) fails because of
maintenance problems. When the project grows there
will be more and more tests re-factoring and test
building blocks (TBB) re-factoring.

mailto:Guy_Arieli@hotmail.com

Tests Configurations Management (TCM)
The usual case for most of the automation project I
run into is that every test has its own configuration.
In the better cases the test is separated to setup phase,
the test main phase and the teardown phase. I can see
a few problems with it:

• It creates restrictions for tests execution order.
• When one test fails it can affect the other

tests.
• You have more code and more code

repetitions.
• You get longer tests execution time.

Test Configurations Management is framework
capability that enables you to define a set of
configurations. Every test is bind to a configuration.
It’s the framework responsibility to move from one
configuration to the other.
The test can assume it’s running under the bind
configuration. The test is not allowed to change the
configuration.
Using TCM sometimes requires to revisions in your
tests plans, but it easiest your project maintenance
and can shorten dramatically the tests development
time.
The models and implementation of Tests
Configurations Management is a subject for deferent
article.

SUT Independent
SUT (System Under Test) Independent is a
framework module that enables you to run tests on
deferent physical SUTs. Assume you are testing a
system that contains a few devices. You identify the
devices by there IP address. Now you have a few
identical setups, that the only deferent between them
is the devices IPs. The requirement is that you will be
able to run the tests on deferent setups without
making changes to the tests themselves.
(You can’t hard code the IPs to the tests code.)

Project layers
Your automation project should be build of 3 main
modules the framework the TBBs and the tests.
We can say that this should be part of the project
design and not part of the requirements. But I add it
because it’s so fundamental.
Keep those modules separated will help you maintain
your project.
I will give a short explanation about each module.

• Framework – responsible for tests execution,
test repository and grouping (suite), test flow
handling, visibility, tests configurations
management and SUT independent.

• TBB – the tests building blocks are the
interfaces to your business components. If
you test Microsoft Word (some thing I hope I
will never do), one of the TBB method will
create new document, one will type text to the
document, one will save a document and so
on. Using the TBB methods you will be able
to build your tests.

• Tests – this one is obvious.

Documentation
All the project modules the Framework, the APIs and
the Tests should be well documented. I find it very
helpful to create documentation convention that will
be used in the project (especially for the tests
documentation).

Tests Hierarchy
Tests hierarchy issue is something between a
requirement and a design recommendation.
The tests should be organized in a tree. There should
be a single testing tree to your project.
The hierarchy of a test will set its place in the tree
and in the used file system (like package in java).
The number of hierarchies should not be limited.
It will help when you hopefully will have thousands
of tests. It also can be used in the Tests
Configurations Management.

Test readability
The tests in your project should be readable, and not
only to the one how wrote them. When opening a test
it should be clear what is tested and how it’s done.

Code reuse
As in every software project you should target that
the code or tests parts in this case, will be reused. In
most of the cases it’s a matter of conventions.

Tests set (suite)
Test set is a logical grouping of tests. It’s should be
part of your automation framework capabilities.
Following are the feature requirements:

• Creation of unlimited variety of tests sets.
• Enable selection of tests.
• Control the order of the tests
• Control the tests running flow.

There should be a mechanism to release tests sets.

Visibility
The project should support the needed visibility.
Usually (in functional system testing) I see a need for
2 layers of visibility:

Detailed view
A report that log every call to every API method in
the test. In case of test failure it should give enough
information to understand what failed.

Management view
Give the needed information to the management
team. Usually the coverage and the status of the run.

It’s important that when writing a test you will not be
troubled by supporting the needed views. It should be
part of the test building blocks (TBB)
responsibilities.

Scalability
Scale is closely linked to maintenance. If you will not
design your project to overcome scale problems you
will end up with a lot of maintenance.

10K tests
Soon enough (hopefully), you will have a project
with more then a thousand tests. It will grow to few
thousands in a year. The tests will be written by
growing number of QA and R&D engineers. It is
something to keep in mind when designing and
coding the project.

Known language
This one is a personal request; please don’t invent a
new scripting language. It is still a mystery to me,
why so many automation projects and up in inventing
new exciting scripting language. So please use
existing language. Language that support object
oriented is even better.

TBB fast development
One of the biggest pitfalls in automation projects is
the development of interfaces to the system tested.
Following is a list of requirements of the TBBs:

• Using committed APIs – it should be built on
committed APIs of the product you are
testing. The commitment is needed to insure
stability and proper use of the APIs.

• Easy to interface – it should be easy to
interface to the needed API. The interface
should be product version independent.

• Stable – the APIs that are uses should be in a
stable stage.

• Simplicity – the interfacing should be simple.
• Early availability – in the R&D process, were

new feature and other changes are entering
the product, the used product API should be
available in early as possible stage of the
development.

Usually the first API to be chosen is the GUI. The
problem with GUI is that it fails all the listed
requirements. It’s not committed, it’s not easy to
interface, it’s usually not stable not simple and it’s
the last to be developed.
In most of the cases my recommendation is not to use
the GUI for functional testing, but to design the
product in such a way it will have a business logic
layer, that is used by the GUI, and by the automation.
The TBBs will be build over this business logic layer.
Then the GUI or the presentation layer can be tested
manually (in a very quick and easy process).

Stability/Simplicity
Your automation project should earn the trust of the
colleagues, QA engineers and of course the software
engineers that develop the product you are testing.
Stable automation will help you in this task.

Smart TBBs
Usually the tests in your automation project will be
written by QA engineers. They should be expert in
the product they are testing and they don’t have to be
(and usually aren’t) expert programmers.
You can help them by doing the following:

• No return value – most of your TBBs should
not return a value. The expected result should
be passed to the methods as parameter.

• Success/Fail – the success/fail decision should
be made inside the TBBs.

• Handling test flow – in case of step fail (the
method fails), some kind of exception should
be thrown. This exception usually will
handled by the automation framework.

• Reporting – in any case (success/fail), the
TBBs should file a report.

• Hide the complexity of the implementation.

	Automation testing project requirements
	Maintainability
	Tests Configurations Management (TCM)
	SUT Independent
	Project layers
	Documentation
	Tests Hierarchy
	Test readability
	Code reuse
	Tests set (suite)

	Visibility
	Detailed view
	Management view

	Scalability
	10K tests
	Known language
	TBB fast development

	Stability/Simplicity
	Smart TBBs

		2004-07-14T12:08:47+0200
	Guy Arieli
	I am the author of this document

