

Customer Oriented
Software Development

(COSD)

Understanding the Power of Profesy™

Dr. Sofia Passova
Chief Scientist and Technology Officer

SOFEA INC.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 2

CUSTOMER ORIENTED SOFTWARE DEVELOPMENT

This article considers the state of contemporary software development processes,
by analyzing the major problems and their core reasons. It explores how modern
methods such as CMMI and Agile Development attempt to solve these problems
and why they are failing to do so. The article also provides an in-depth
theoretical foundation for the necessity of a major paradigm shift in software
development. A fundamentally new approach - Customer Oriented Software
Development (COSD) - is proposed.

COSD changes the entire software development process in ways that will result in
dramatic improvements in overall efficiency and quality. The recent
commercialization of Sofea Inc.’s Profesy™ suite of tools enables, for the first
time, the automated application of COSD methodology in sophisticated software
development environments.

1. Software Development Today

For anyone involved, it comes as no surprise to say that software development is a
time consuming, expensive process, often yielding results of disappointing
quality. Today’s software projects are typically plagued with time and cost
overruns, producing deliverables that fall short of customer needs.

As a result of increasing awareness of the problems associated with software
development and their extravagant cost to business, countless recent initiatives
have focused on process improvements. Despite these efforts, the industry is still
in crisis. As software complexity increases, the core problems are exacerbated.

This article focuses on the question of “efficiency”, from the perspective of three
criteria: time, cost and quality.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 3

1.1 Analysis of the Software Development Process

The typical software development process can be represented conceptually as a
multi-level human communication channel.

Illustration 1: Multi-level Human Communication Channel

The customer communicates with the BA, the BA with the designer, the designer
with the developer, and the developer with the tester.

At each communication level, information is analyzed by an assigned specialist
and transformed into a new format: at the BA level, into the requirements
document, at the Design level, into the design specifications, at the Developer
level, into the code and, at the Tester level, into the tests.

As we can see from the model, performance and quality of the entire process is
dependent on:

• performance and quality parameters at each level of information processing;

and

• performance and quality parameters of communication between levels.

Thus, efficiency of the software development process depends on:

• the efficiency of each group of software development specialists; and

• the efficiency of human communication between the groups of specialists.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 4

1.2 Analysis of Working Efficiency of Software Specialists

Recently, there has been an enormous industry-wide effort to improve quality in
the work of software specialists.

1.2.1 The Empowered Developers – the “First Born”
Particular attention has been paid to improving the work of developers:

• more efficient methodologies and standards are being proposed and published;
• new software development tools are appearing on the market; and
• many professional seminars and workshops are being developed and offered.

Since programming was really the first computer profession, today’s developers
benefit from being the “first born” among other software specialists, enjoying the
overwhelming bulk of attention and improvement efforts.

As a result, developers are fully equipped to perform their work efficiently. In
general, “the empowered developers” already have sufficient tools, methods,
models and knowledge.

1.2.2 The Semi-Equipped Tester
Y2K played a significant role in establishing testing as a self-contained discipline.
More efficient formal testing methods and techniques are now replacing ad hoc
approaches and creating new opportunities for test improvement. However,
testing and QA improvement is still hampered by serious limitations in modern
testing tools. While test tools can automate test execution, there are virtually no
tools on the market for automating the most difficult and intellectually demanding
part of the testing process: test development.

We will define this issue as the “semi-equipped tester” (a tester equipped only
with limited tools and resources).

1.2.3 The Unequipped Business Analyst
Business analysts are in a much more difficult situation than developers and
testers. They still suffer from a lack of efficient standard methods of requirements
development, analysis, integration and change. The introduction of the Use Case,
a relatively new and very popular requirement development artifact, is a step in
the right direction. But in practicality, the typical business analyst has great
difficulty developing Use Case models, due to the absence of Use Case definition
standards and methods for Use Case development and validation. As a result,
business analysts typically use ad hoc approaches. The results of their work
remain largely dependent on subjective factors, including individual skill levels
and other personal characteristics.

We will use the term “unequipped business analyst” to reflect this situation.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 5

1.2.4 The Powerless Customer
Of all roles in the software development process, customers are unquestionably in
the worst situation. There are still no accepted methods or tools to help the
customer define, refine, analyze, validate and express their needs. In the software
development business, customers are forced to articulate what they want in
exactly the same antiquated way as they have done in other contexts for hundreds
of years. We will use the term “powerless customer” to reflect this situation.

An analysis of working methods and techniques used by different specialists
involved in the various phases of the software development life cycle shows not
only that the efficiency of their work varies, but also that the customer and the
business analyst have become the most critical elements of the entire process.
Ironically, it is the customer and business analyst who have been largely ignored
in recent quality improvement initiatives. Few, if any, new tools or methodologies
have been introduced to assist them in their stage of the process.

1.3 Ambiguity in Human Communication
Even if we see improvements in the working efficiency of software specialists, a
fundamental problem persists: fallible human communication. Today we can
organize very reliable communication between rockets and submarines, airplanes
and automobiles; between different types of computers and telephones. We have
wrapped the world in multiple communication lines, we have Intranets and the
Internet. But we still tend to misunderstand each other, even when speaking the
same language. We will call this phenomenon “ambiguity in human
communication”.

Ambiguity in human communication is often the root cause of low performance
and poor quality of the software produced by the contemporary software
development process. Even if all other reasons for software development
efficiency problems are eliminated, errors arising from an imperfect
understanding of customer needs will continue to be the major constraint on
software development improvements.

We demonstrate below that no design/code/testing effort can meaningfully
improve the quality of software products until these roadblocks are removed.

1.4 Core Reasons for Low Efficiency of Software Development
As illustrated by the analysis in Sections 1.1 – 1.3, the core reasons for today’s
software development inefficiencies are:

• ambiguity of human communication;
• the powerless customer;
• the unequipped business analyst; and
• the semi-equipped tester.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 6

These reasons are listed in order of importance. However, ambiguity of human
communication is the over-arching and pervasive issue in all phases of the
software development life cycle.

When one factors in the typical cycles of change, integration and evolution
associated with the development of any software product, the problems caused by
these core reasons for low efficiency are significantly magnified.

These problems translate into huge costs to today’s businesses. According to a
recent study by the National Institute of Standards and Technology (NIST), a
federal agency within the U.S. Commerce Dept., “Software bugs are costing the
US economy an estimated $59.5 billion a year”. And there is more than just the
cost of low quality to consider; there are also the dire economic consequences of
the software development industry’s continuing failure to deliver solutions on
time.

Below, we demonstrate that even the most aggressive design/code/testing
improvement efforts will not be enough to increase the efficiency of software
development until the root causes of its current inefficiency are eliminated.

1.5 Paradoxes of the Software Development Process

1.5.1 Requirements have become a prototype of future software problems
As a result of the “ambiguity of human communication”, the “powerless
customer” and the “unequipped business analyst”, articulated software
requirements typically fail to reflect the customer’s needs (see Illustration 1).

Incorrect requirements lead to defective software.

Problems in software arising from incorrect requirements cannot be identified
during the testing processes, because tests developed from incorrect requirements
and will inevitably have exactly the same bugs.

As a result, instead of being a prototype of software that meets customers’ needs,
requirements all too often become a prototype of future software problems!

1.5.2 Tests, instead of finding bugs in the product, are harboring bugs themselves
There are three reasons why the benefits of testing can quickly become illusory:

• First, when tests are developed based on requirements, they inherit the same

problems and limitations as the requirements and the implemented product.
Applying these incorrect tests to the product will result in the misleading
conclusion that there are no bugs.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 7

• Furthermore, even with absolutely perfect requirements, tests still will be
incorrect as result of the problem we have identified as the “semi-equipped
tester”. For today’s complex systems, manual test development is simply not
adequate. Manual test development will not result in accurate, comprehensive
testing of software.

• Finally, if tests are developed based on the ultimate product, rather than the
requirements that it was supposed to satisfy, tests would still have these same
errors and omissions. The product will be defective because it will be plagued
with the same errors exhibited by the requirements. Product-based tests will
not expose these defects (see paradox 1.5.1).

Applying tests to the product in this context will never identify all the product’s
bugs, omissions and problems. Tests, instead of finding bugs in the product, are
harboring bugs themselves.

1.5.3 Design/coding process improvements do not allow development of a bug-free
product
Even if one were to assume a perfect design/code process – completely free of
bugs – the resulting product still has bugs. Why? The requirements, which are the
input for the design/coding process, are incorrect (see paradox 1.5.1). Incorrect
inputs lead to deficient outcomes.

1.5.4 Each modification produces an exponential number of other modifications
The introduction of modifications to requirements raises the same problems as
baseline requirements development: “ambiguity of human communication”, “the
powerless customer”, and “the unequipped business analyst”. As a result of the
modifications being incomplete and incorrect, further modifications are required.

Modifications introduced in the design/code phase of the software development
life cycle result in inconsistencies between requirements and the implemented
product, increasing the need for subsequent modifications and making the
modification process itself more difficult, less controlled and incapable of proper
management.

1.5.5 New development is really legacy systems development
The traditional software development process all too often produces incorrect
requirements, a faulty product and inconsistent documentation. Really we are
creating out-of-control systems that become “legacy systems” even before they
are delivered!

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 8

2. Modern Methods for Improving Software Development
Processes

The following are two of the most popular current attempts to improve the
software development process:

• CMMI (Capability Maturity Model Integration); and
• Agile Development.

It is important to understand how effective these methods are at attacking the core
reasons for the low efficiency of software development, as formulated in Section
1 of this article.

2.1 CMMI

Capability Maturity Model Integration (CMMI), the highly respected software
management methodology published by the Software Engineering Institute (SEI),
has been adopted by thousands of major organizations seeking to position
themselves as industry leaders in software development.

CMMI has been shown to reduce risks associated with development projects,
increase efficiency and improve the quality of software deliverables.

CMMI introduces a set of goals and practices geared to improving the software
development process. It has been developed for the classical software process,
which can be represented by the multi-level human communication channel (see
Illustration.1).

2.1.1. CMMI, the “The Powerless Customer” and “The Unequipped Business
Analyst”

Solving the problems of “the powerless customer” and “the unequipped business
analyst” is the principal objective of CMMI Goals in the following CMMI
Process Areas:

• Requirements Management; and
• Requirements Development.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 9

Table 1, below, defines these CMMI Goals.

Table 1: CMII Goals and Practices, in Requirements Management and Requirements Development

Process Area Maturity
Level Goals

Practices

(In each SP X.Y-Z, the Z specifies Capability level.)

SP 1.1-1 Obtain an Understanding of Requirements

SP 1.2-2 Obtain Commitment to Requirements

SP 1.3-1 Manage Requirements Changes

SP 1.4-2 Maintain Bi-directional Traceability of Requirements

Requirements
Management

2 SG 1

Manage
Requirements

SP 1.5-1 Identify Inconsistencies between Project Work and
Requirements

SP 1.1-1 Collect Stakeholder Needs

SP 1.1-2 Elicit Needs

SG 1

Develop Customer
Requirements

SP 1.2-1 Develop the Customer Requirements

SP 2.1-1 Establish Product and Product-Component Requirements

SP 2.2-1 Allocate Product-Component Requirements

SG 2

Develop Product
Requirements

SP 2.3-1 Identify Interface Requirements

SP 3.1-1 Establish Operational Concepts and Scenarios

SP 3.2-1 Establish a Definition of Required Functionality

SP 3.3-1 Analyze Requirements

SP 3.4-3 Analyze Requirements to Achieve Balance

Requirements
Development

3

SG 3

Analyze and
Validate
Requirements

SP 3.5-1 Validate Requirements

The recommended practices shown in Table 1 are useful guidelines for improving
the process of capturing requirements. But several very important practical
questions remain: How does one implement and follow these practices? How does
one apply these guidelines to “obtain an understanding of requirements”, “analyze
requirements”, or “validate requirements” without modern models and tools to
help us?

To be more precise, how should one implement specific practices such as
“develop the customer requirements” and “establish product and product
component requirements”, which call for bi-directional traceability between
requirements? The achievement of bi-directional traceability, when attempted

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 10

manually, is a very difficult, time-consuming and error-prone process. Even more
difficult is the challenge of modifying traceability when requirements change.

Thus, although CMMI has a disciplined engineering approach to requirements
gathering and requirements development, it is also an approach that cannot be
implemented efficiently or reliably without modern analysis models and tools.
This statement was confirmed by many participants of SEPG 2004-Enterprise
Process Improvement Conference, with whom the author had opportunity to
discuss these concepts.

As a result, poorly implemented CMMI (without supporting models and tools)
does not allow us to overcome the problems of “the powerless customer” or “the
unequipped business analyst.”

2.1.2 CMMI and Human Communication Ambiguity
Conceptually, CMMI employs an age-old principle - “Divide and Conquer” - to
rationalize the software development process. All processes are subdivided and
deconstructed into process areas; process areas are broken down into goals; goals
into practices; practices into steps. The intent is to introduce more discipline to the
entire software development process, including human communication, and to
improve its quality.

Some degree of human communication improvement can be achieved with
CMMI’s verification and validation practices. But the same limitations identified
in 2.1.1. (i.e. an absence of supporting models and tools) prevent us from attaining
a complete solution for the human communication problem.

2.1.3 CMMI and “The Semi-equipped Tester”
CMMI does not provide any specific methods or tools for automating the test
development process. As a result, it does not solve the problem of “the semi-
equipped tester”.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 11

2.1.4 Summary of CMMI Analysis
The results of an analysis of CMMI’s ability to attack the core reasons for
software problems are represented in Table 2. The table considers each core
reason and CMMI’s ability to eliminate it, classified into 3 levels of capability:

Level 0 – not capable of eliminating this core reason
Level 1 – partially capable of eliminating this core reason
Level 2 – capable of eliminating this core reason

Table 2

Core Reason for Software Problems Capability of
Elimination

Limitation

The Powerless Customer 0 Absence of supporting models and
tools

The Unequipped Business Analyst 0 Absence of supporting models and
tools

The Semi-equipped Tester 0 Absence of supporting models and
tools

Ambiguity of Human Communication 1 Absence of supporting models and

tools

As the analysis above shows, CMMI does not resolve the core problems inherent
in software development. CMMI’s software process improvement capabilities are
restricted by the absence of supporting models and tools. This is why practical
implementation of CMMI has proven to be very expensive, and why many
organizations have spent years attempting to advance even one CMMI level.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 12

2.2. Agile Development

Agile development methods (such as XP, Scrum, Crystal Orange, DSDM,
Adaptive Software Development, Feature-Driven Development, and “pragmatic
programming”) have been proposed as a response to the CMMI problems of
“postponed” delivery, communication, requirements, testing and documentation.

Agile methods are defined in the Agile Manifesto [1] as:

“Individuals and interactions over processes and tools;
Working software over comprehensive documentation;
Customer collaboration over contract negotiation;
Responding to change over following a plan.”

To analyze how Agile methods attack the core reasons for software development
problems, we will look at the example of Extreme Programming (XP).

In the XP methodology, the customer is fully involved in the software
development process. He works with programmers in the same room throughout
the entire project. The customer describes what he needs in small simple
increments called “user stories”, which are about 3 sentences of text.
Implementation of user stories is performed iteratively.

Developers work in pairs, and implement these stories into code. One story results
in one iteration. Iterations tend to be of short duration; generally 1 to 3 weeks.

Simultaneously, testers write tests for each story and are ready to test it even
before the code is written, following the principle “test before code”.

All processes are followed by refactoring, which involves “altering the structure
of an existing code base to improve its design quality” (Martin Fowler, [2])

One can adapt the multi-level human communication model to the XP method for
analysis. A simplified model representation of one iteration of the XP process is
represented in Illustration 2.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 13

Illustration 2: Single iteration in XP process

As one can see from the picture, this model varies significantly from the CMMI
model (Illustration 1). The relevant question, however, is whether or not this
change in approach really improves the software development process,
eliminating the core reasons for the problems identified above.

2.2.1 XP and the “The Powerless Customer”
XP proposes that the customer be a part of the development team and spend all
his time on the project. The customer sits with the development team in the same
office and has the opportunity to discuss his needs with programmers and testers
directly. The customer is also directly involved in “User Acceptance Testing”.

This sounds like a movement in the right direction. But does XP offer the
customer some methods or tools to understand his own needs, and to express them
in the clearest manner? Does XP really ensure that there is some opportunity to
validate, from the beginning of the process, that the customer is being understood
properly?

The answer to both these questions is “No”. To sit in the same room is one thing,
but to understand each other is something else entirely. Language is more
important than location in this sense. Consider the problem in this way… is
communication better when one speaks to the person who one sits with every day
if that person does not really speak or understand your language, or is it better to
communicate in a common language with someone even at a far distance? It
seems that XP, instead of equipping the customer with new methods and tools to
improve his effectiveness and efficiency, takes up a large amount of his time with
no guarantee of meaningfully better results.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 14

However, XP does present a very important new opportunity for the customer.
The customer can now see prototypes of parts of his system every 1-3 weeks (i.e.
after each new iteration). This allows the customer to validate his ideas regarding
each new piece of functionality, and to confirm that his ideas have been correctly
interpreted and understood by programmers. Even though this validation can be
performed only for pieces of system functionality, and only after their
implementation, this is still a real step toward elimination of the “the powerless
customer” syndrome.

2.2.2 XP and the “The Unequipped Business Analyst”
XP does not assume the use of a business analyst (BA) in the development
process. As one can see from Illustration 2, there are fewer process roles in XP,
compared to CMMI.

“But if there is no BA, who develops requirements?” one might ask. The answer
is… no one. XP promotes the idea of minimal documentation, and focuses on
working code instead of documentation. This raises two fundamental issues:

1. XP was heralded as a response to change management problems within

CMMI and similar software development approaches. But how does one
maintain XP-developed products and introduce changes to them without
requirements documentation?

2. Everyone knows the nightmare of working with legacy systems, due to the
typical absence of documentation. Since XP places little emphasis on
documentation, are XP promoters introducing classic and intractable “legacy
problems” into new development?

Some XP promoters offer the possibility of using a BA in the customer role, but
this is less efficient and potentially less reliable than using the actual customer.
“Although the business analysts have a good understanding of the business, they
may lack the detailed, leading-edge knowledge that would let them steer the
project to a truly superior solution.”[3]

Thus, XP not only fails to solve the problem of “the unequipped business analyst”
problem, it exacerbates the problem by replacing deficient requirements with a
complete absence of requirements.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 15

2.2.3 XP and the “Semi-equipped Tester”
XP pays serious attention to testing. “Tests are created before the code is written,
while the code is written, and after the code is written”. We will consider the
impact of XP methods on the problem of the “semi-equipped tester”, for
individual iterations and for the product releases.

Individual Iterations: XP improves test quality for individual iterations, by
decreasing the complexity of the test development task. Test development is
based on the short, simple user stories. Testers also have the opportunity of direct
contact with customers, and to revisit and improve developed tests.

Product Releases and Entire Product: It is easy to demonstrate that XP methods
do not allow development of comprehensive tests for the product releases or for
the entire product. Products (product releases) are generally created as a result of
multiple development iterations. Refactoring follows each new iteration and
supports continuous code improvement, although not necessarily ensuring that the
code correctly performs the required functionality.

The situation with tests is different. Assume that tests exist for a first and second
iteration. What about integrated tests for the two iterations once integrated
together? What should one use as source information for the tests? Requirements?
There are no requirements. User Stories? There are no integrated user stories. One
can only create tests based on assumptions or by using ad hoc methods. However,
the quality of these tests and their results, is questionable. And of course, this
problem compounds itself upon an increasing number of iterations.

Thus, XP only partially eliminates the problem of “the semi-equipped tester”.

2.2.4. XP and “Ambiguity of Human Communication”
XP methods improve human communication by introducing more intensive
human interaction in the software development process. But an absence of
efficient methods and tools that would support a better understanding between
groups of specialists, prevents the “human communications ambiguity” problem
from being solved completely.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 16

2.2.5. Summary of Agile Development Analysis
The ability of Agile development methods to attack the core reasons for
contemporary software problems, using the example of XP, is represented in
Table 3.

Table 3

Core Reason for Software Problems Capability of
Elimination

Limitation

The Powerless Customer 1 Absence of supporting models and tools

The Unequipped Business Analyst 0 BA is eliminated from process

The Semi -equipped Tester 1 Absence of system requirements

Ambiguity of Human Communication 1 Absence of supporting models and tools

Agile methods propose some meaningful improvements but do not completely
eliminate the core reasons for today’s software problems.

It is also important to note that Agile methods introduce a new quality problem as
result of their “non holistic” approach to software development. For example,
refactoring, which is intended to improve quality of the code, very often has
negative implications for quality. Refactoring expert Martin Fowler explains the
role of refactoring in XP programming in this way:

“With Extreme Programming, you use refactoring continuously, so every day
while doing some refactoring to the code you're writing so that whenever you
start a task, you look at the code and say, does the code work in a way that allows
me to add this new piece of functionality I need? If not, you refactor it to make it
easier. Also, while you're getting the test to work, you're not quite so concerned
about the design quality; you're concerned about getting the function in. But then
as soon as you've gotten the test to work, you must refactor to make the design
quality very, very high.” [2]

But where is the guarantee that during this “past test” refactoring, one will not
introduce new bugs? As demonstrated in 3.2.3 above, one cannot efficiently find
system mistakes using XP tests. These mistakes can be accumulated such that the
probability of system correctness will exponentially decrease with a growing
number of iterations. This is one of the reasons why Agile methods can be applied
only to relatively small projects.

Thus, our analysis of CMMI and Agile methods concludes that that they introduce
the possibility of some improvements without resolving the core reasons for
contemporary software development problems.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 17

These methods introduce improvements based mostly on organizational changes
and disciplined activities, but what the software industry really needs are
fundamental technical changes and new execution paradigms for the successful
development of complex modern software systems.

3. Customer Oriented Software Development (COSD)

Customer Oriented Software Development (COSD) describes a new software
development paradigm which fundamentally changes the entire software
development process, altogether eliminating the core software problems discussed
in this paper.

What makes COSD fundamentally different? COSD shifts the focus to
supporting and improving the process of “ideation” (the forming of ideas) and the
transformation of idea to reality.

3.1 Theoretical and Practical Foundation

One should first consider the software development process philosophically. What
is it?

Fundamentally, it is a process of transforming elements of the ideal world into
elements of the material world, with human participation. It is the transformation
of ideas into a finished product.

Today, this “Idea to Product Transformation Process” consists of 3 main stages:

• Stage I: Idea → Requirements (Ideation Stage);
• Stage II: Requirements → Design (Design Stage); and
• Stage III: Design → Final Product (Coding Stage).

Illustration 3: Stages in Idea to Product Transformation

It is essential to analyze these stages in some depth.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 18

3.1.1. Stage 1 Idea →→→→ Requirements

This stage is the most important, because at this stage the first embodiment of the
idea emerges in the material world.

3.1.1.1 Business Analysis and Requirements
Originally, in the beginning of the programming era, programmers themselves
could understand, create and implement ideas. This was possible because the first
programming tasks were usually expressed mathematically and therefore had
formal representation.

Later, as result of the continued development of our technological civilization,
more and more complex ideas and idea systems needed to be transformed into
software. A growing problem for software development inevitably emerged: how
can one communicate complex ideas properly and what sort of specialist can
understand and translate such communication?

For example, if a customer needs to create software for a complex business
system, how does one effectively explain to programmers the essential business
needs, concepts and processes being addressed? The conceptual worlds of
business people and programmers are very different. One side is a “world of ROI”
and the other side is a “world of statements and loops”. The communication gulf
is understandably enormous.

This “disconnect” between the conceptual worlds of business and programmers
necessitated the introduction of a new intermediate specialist – the Business
Analyst (BA). The conceptual world of the BA includes some elements of
conceptual worlds of both the customer and the programmer. The major task of
the BA is to understand customer ideas and to reflect them as a set of documented
“requirements” which, in turn, should be understandable by the programmer.
Thus the BA performs the transformation or translation of ideas from the
conceptual to the material world.

Theoretically, the requirements are the first embodiment of the “idea” in the
material world.

Practically, the requirements are a common resource for information for the entire
development team, as shown in Illustration 4.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 19

Illustration 4: The requirements document is a common source of information for the entire
development team

Below, Table 3 shows how the team members use requirements for their work.

Table 3 - How requirements are used by team members

A person in this role…A person in this role…A person in this role…A person in this role… Uses the Requirements document…Uses the Requirements document…Uses the Requirements document…Uses the Requirements document…

Customer to verify that his needs were understood properly, and to validate the scope

and volume of work

Project Manager to assign tasks and to schedule and manage their completion

Programmer as a major source of information for the development of the program
specifications and code

Tester to create test scenarios and test cases for the product validation

Maintenance & Technical support to analyze problems and introduce change

Technical Writer as a source of information for User Manuals and other documents

As quickly becomes apparent, the correctness and completeness of project
requirements determines the quality of all software artifacts. But the quality of
requirements is typically very questionable.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 20

3.1.1.2 Requirements Quality

What criteria allow requirements to qualify as good requirements?

Within the scope of any “idea-to-requirements transformation process”,
requirements must first meet the criteria of accurately reflecting customer needs.
But what is the situation in today’s reality?

• The customer does not often clearly understand his own needs. He has some

overall vision of his future system, and some partial pictures of its behavior.

• The customer’s explanation will likely have elements of redundancy,
incompleteness and misconception.

• The BA frequently introduces errors due to misinterpretation of the
customer’s explanation.

• The BA also introduces his own bugs in requirement specification, as typical
human error.

• After many meetings and discussions the requirements are “approved” or
“signed off”, and everyone assumes they have good requirements
specifications, which is not the case.

• The customer cannot properly or easily validate the quality of the resulting
requirements, nor validate that the requirements match his original ideas.

As a result of these factors, the quality of the requirements is extremely low.

3.1.1.3 Idea → Requirements Transformation Risk

The “idea to requirements transformation process” is the most difficult and
unreliable part of the entire software development life cycle.

Typically, this transformation is performed manually and the resulting
requirements documents contain misinterpretations, errors and omissions.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 21

The most difficult questions are pervasive:

As shown below, COSD delivers a direct and clear answer to these critical
questions.

3.1.2 Stage 2 Requirements →→→→ Design

In this section, we consider the transformation of requirements not only into the
design specification, but also into test specifications (even though testing is
typically considered as a separate stage in the software development lifecycle).
We take this approach because both of these transformations can and should be
performed in parallel.

3.1.2.1 Requirements →→→→ Design Transformation
Programmers use design specifications as input artifacts for their coding. Today’s
design is typically represented by flow charts, structural diagrams for the
procedural approaches, activity diagrams and other UML artifacts for object-
oriented approaches.

Because the typical requirements document is not very formal, there is vast
opportunity for misinterpretation by developers. The manual development of
program specifications creates a high risk of introducing further misinterpretation
errors. When requirements are incorrect or incomplete, the likelihood that
additional errors will be introduced during the design phase is even higher, as a
result of the ambiguity of human communication. If a programmer sees some
contradictions or omissions in the requirements, he tries to resolve the problem
through multiple discussions with the BA or even the customer. Very often, even
when the right answer is found, it is not reflected in updated requirements, and
different specialists end up using different versions of requirements.

What is the customer idea?
How can one correctly ascertain and understand the customer idea?
How can one articulate a correctly understood customer idea?

Until these questions are answered, it is practically impossible to develop
correct requirements for any software development project.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 22

3.1.2.2 Requirements →→→→ Test Specifications Transformation
A similar situation emerges in the transformation of requirements into testing
specifications. But in this case, in addition to the possible errors mentioned above,
there are many errors caused by incorrect test specification development
processes.

Transformation of requirements into test specifications is technically much more
complex than transformation or requirements into program specifications. In fact,
programming specifications are received as result of the natural transformation of
requirements. In the case of test specifications, the base challenge of compilation
is compounded by the very complex process of synthesizing tests and test
procedures.

3.1.2.3 Requirements →→→→ Design Transformation Risk
As sections 3.1.2.1 – 3.1.2.2 demonstrate, the transformation of the requirements
to the design (including, especially, test specifications) is a risky and unreliable
process.

These risks are due not only to the poor quality of the requirements themselves,
but also due to mistakes related to manual interpretation of the requirements.

In replacing manual methods for developing requirements, by introducing design
transformation with automated methods, one is able to significantly reduce the
risks of misinterpretation by developers.

Correspondingly, the introduction of automated test development methods will
dramatically reduce the risks related to the transformation of requirements into
tests.

As it will be shown in Section 4, COSD proposes automated methods for
generating design and test artifacts.

3.1.3 Design → Final Product Transformation

The final stage of the software development process is the transformation of the
design specification into the actual product – the coding process.
Correspondingly, test specifications are transformed to real test cases that can be
applied to product testing.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 23

3.1.4 Overall Risk Analysis

As we have seen, the Idea to Product transformation process consists of 3 stages:

• Stage I: Idea → Requirements;
• Stage II: Requirements → Design; and
• Stage III: Design → Final Product.

Usually, the success of the overall transformation from idea to final product is
validated by testing of the final product. Test specifications are prepared after, or
simultaneously with, the development of the program specifications.

Where do the greatest risks of failure arise?

• The first stage, the “idea to requirements transformation process” or “ideation

phase”, is the most risky stage of the whole software development process. At
this stage, we make the biggest leap from the “ideal” or “conceptual” world to
the “material” or “actual” world, and we have the largest number of
transformations (i.e. translations):

Customer idea → customer words → BA words → BA ideas → BA requirements

• The second stage, the “requirements to program and test specifications
transformation process” or “design phase”, is risky too, but the risk here is
decreased by the fact that transformation is performed entirely within the
boundaries of the “material” world.

• The third stage of the process, the “program specifications to final product
transformation process” or “coding phase”, is the least risky, because it
involves transformation from one formal representation to another, such as
from flow chart to code.

Historically, experts have paid most attention to the third stage of the software
development life cycle, which actually presents the lowest risk. Given the overtly
programmer focused approach traditionally taken in the development of software
development methodologies and tools, it is not so surprising that the industry still
lacks effective methodologies and tools for increasing reliability of the most risky
first two stages of the “idea to product” transformation process.

However, despite the fact that some experts have recently begun to turn their
attention to the problem of requirements definition and, in particular, to reducing
the errors resulting from that stage of the software development life cycle, their
focus still tends to be on the second stage – the “design stage”, when the real
source of problems is even earlier in the software development life cycle.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 24

To resolve the current crisis in software development, we need to address the root
cause of low efficiency by ensuring that the customer’s idea is fully understood
and comprehensively articulated well before the design or coding phases of the
process begin. This is the only future paradigm for software development that can
adequately address the massive “transformation risks” inherent in the software
development life cycle.

3.2 Idea of the Future: COSD Paradigm

In this section, a fundamentally new approach to software development –
Customer Oriented Software Development (COSD) – is introduced and explained.
COSD, a methodological reworking of the traditional software development
process, was created to solve cost/time/quality problems in the software
development life cycle by eliminating the core reasons for them.

Because the COSD paradigm assumes that the customer and his ideas are of
prime importance, implementation of COSD allows us to:

• Help the customer understand his own ideas;

• Help the customer to evolve/refine his ideas and to more clearly formulate his

needs;

• Help the customer explain/articulate his ideas so that they are understood by
other team members;

• Give the customer the opportunity to validate/confirm that he was understood
properly;

• Give the customer appropriate project visibility and control;

• Allow the customer to see the impact of changing/modifying his idea and to
compare different ideas in order to choose the best solution; and

• Fully involve the customer in the project, without monopolizing his time.

Coming to a clear understanding of the customer “idea” is only part of the
challenge. As managers of complex software development projects all know, an
initial product “idea” can easily be distorted or lost by the subsequent stages of
the software development process. COSD allows software development
organizations to avoid such results by ensuring that project artifacts do not breach
the scope of the original idea unless the original idea has changed.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 25

COSD facilitates automated real-time parallel development of project artifacts,
including documentation and tests, based on the evolving and iteratively validated
customer idea.

And because the customer can (and often does) change his original idea, COSD
deals with change as a necessary attribute of the modern software development
process. COSD ensures organic, comprehensive and coherent change of all
project artifacts when the original customer idea changes at any stage in the
product development process.

.

3.2.1 What is COSD?

COSD is the method for discovering, evolving, refining, validating and managing
the continuous transformation of the customer idea into an executable software
product, based on the Universal Diagnostic Imitation Model.

COSD assumes:

• The possibility of documentation and validation of the transformation process,

at any point in the software development life-cycle, against the original
customer idea;

• The introduction into the software development process of a stage of enquiry
and analysis (called the “customer needs determination” phase) that is
antecedent and prior to the requirements determination and articulation phase.
The process of “customer needs determination” enables the ideation of the
customer’s perception of the future product in his own language and
terminology. The result of this process automatically serves as a requirements
prototype.

• A new type of software development process, the “parallel process”, which
replaces the serial process typical of CMMI methods and the refactoring
process essential to Agile methods. The “parallel process” allows concurrent
and automatic generation of all software development project artifacts,
including requirements, design specifications, product tests and the product
itself, based on customer needs.

• Overall bi-directional traceability between all project artifacts and customer
needs;

• Coherent change of all project artifacts in tandem with any modifications to or
enhancement of customer needs; and

• Integration, at a high level of abstraction, of ideas, needs, and requirements.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 26

Basic concepts of the COSD paradigm are represented by illustrations 5 and 6.

The original customer Idea, I0, is translated by T0 using intermediate language into
the Universal Diagnostic Model (M0). Model M0 allows verification of the
original customer idea, and supports automated retranslation of it into dynamic
simulation view (S0), which is represented in the customer’s language /
terminology. The customer reviews the simulation and validates it against his
original idea (I0). As a result of this validation process, two outcomes are
possible:

• The customer does not agree with the representation, and concludes that his

idea was mistranslated; or

• The customer sees new possibilities for his future product, and evolves his
original idea.

In the first case, sequence I0, T0, M0 and S0 will be repeated and corrected.

In the second case, original idea I0 will be transformed into the idea I1, and the
entire validation process will be repeated via T1, M1, S1 states. It is of utmost
importance in this process that states In, Tn, Mn and Sn are fully consistent and
compliant with each other. This idea validation and evolution process will be
repeated as many times as needed, until the customer is satisfied with his idea of
the product. This significant moment is defined by ICN, TCN, MCN and SCN states,
where “CN” signifies “customer needs” (Illustration 6).

Illustration 5 - Evolution, validation and transformation of Customer Idea into Customer Needs

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 27

At this stage the Model fully reflects customer needs and can be used as the
information generation engine for all project artifacts and for the software product
itself.

Illustration 6 shows how COSD changes the software development life cycle.

The process consists of two basic stages:

• evolving the original customer idea to the state of customer needs; and

• concurrent generation of all product artifacts based on customer needs,

including the product itself.

Thus, instead of the traditional approach in which we manually develop product
artifacts based on incorrect customer requirements that rarely reflect customer
needs, COSD proposes the possibility of automated and concurrent generation of
all artifacts based directly on validated customer needs.

As a result of this approach, the seminal importance of the requirements phase of
the software development life cycle is diminished. In effect, requirements become
a documentation source only (i.e. another artifact flowing from customer needs),
useful for future product maintenance and support.

It is easy to see that, using the COSD approach, the time required for any complex
development process is significantly reduced when compared to traditional
processes. At the same time, the COSD methodology guarantees a very high
quality of final product, because the transformation from idea to final product is
not only automated; it flows directly from validated customer needs.

As a result, the “centre of gravity” in the software development process shifts
from coding (i.e. the programmer) to the customer, conferring total control to the
customer over the entire software development process.

Illustration 6: Parallel Software Development Lifecycle

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 28

COSD eliminates all of the “core reasons” for contemporary software
development problems:

• powerless customer;
• unequipped business analyst;
• semi-equipped tester; and
• ambiguity in human communication.

As a direct result, COSD also significantly increases the overall efficiency of the
software development process. In particular:

• The customer receives tools to evolve, refine, validate and express his ideas;
• The business analyst can automatically generate requirements based on

customer needs;
• The tester has automatic test generation capability; and
• Ambiguity in human communication is eliminated due to the automation of

the transformation from customer idea to final product.

Table 4 – COSD Capability to eliminate the core reasons for software problems

Core Reason for Software Problems Capability of
Elimination

Limitation

The Powerless Customer 2 None

The Unequipped Business Analyst 2 None

The Semi-equipped Tester 2 None

Ambiguity of Human Communication 2 None

Profesy™ is the first in a series of tools from Sofea Inc. that automates COSD
methodology. Profesy™ performs automated requirements generation, simulation
and validation, as well as automatic generation of Flowcharts, Activity Diagrams,
Use Cases, Tests, and Documentation.

Profesy™ also supports all contemporary methods, such as RUP, CMMI, Agile
Development, MDA, SOA and SODA.

Customer Oriented Software Development, powered by Profesy™, will change
the way that all complex software is built and modified. Profesy’s ability to
accurately capture and simulate the customer’s idea of a future software product
is, itself, an idea about the future of software development whose time has come.

Customer Oriented Software Development

Copyright 2004, Sofea Inc. All rights reserved. 29

References:

[1] “Agile Manifesto”
www.agilemanifesto.org

[2] Fowler, Martin. “XP (Extreme Programming)”
www.martinfowler.com

[3] Hayes, Steve. “An Introduction to Agile Methods”
Steve Hayes (Khatovar Technology)
steve@khatovartech.com
http://www.khatovartech.com

Additional Resources:

Passova, Dr. Sofia. “CMMI and Profesy: How Profesy Supports CMMI Goals and
Practices in Engineering Process Areas”
www.sofeainc.com

Orr, Ken. “CMM versus Agile Development: Religious Wars and Software
Development”, Cutter Consortium.
www.cutter.com/freestuff/apmreport.html

Andrews, Martin (Object Consulting).
www.objectconsulting.com.au

Jeffries, Ron. What Is Extreme Programming? 2001
www.xprogramming.com

http://www.agilemanifesto.org/
http://www.martinfowler.com/
http://www.khatovartech.com/
http://www.sofeainc.com/
http://www.cutter.com/freestuff/apmreport.html
http://www.objectconsulting.com.au/
http://www.xprogramming.com/

	CUSTOMER ORIENTED SOFTWARE DEVELOPMENT
	1. Software Development Today
	1.1 Analysis of the Software Development Process
	1.2 Analysis of Working Efficiency of Software Specialists
	1.2.1 The Empowered Developers – the “First Born”
	1.2.2 The Semi-Equipped Tester
	1.2.3 The Unequipped Business Analyst
	1.2.4 The Powerless Customer

	1.3 Ambiguity in Human Communication
	1.4 Core Reasons for Low Efficiency of Software Development
	1.5 Paradoxes of the Software Development Process
	1.5.1 Requirements have become a prototype of future software problems
	1.5.2 Tests, instead of finding bugs in the product, are harboring bugs themselves
	1.5.3 Design/coding process improvements do not allow development of a bug-free product
	1.5.4 Each modification produces an exponential number of other modifications
	1.5.5 New development is really legacy systems development

	2. Modern Methods for Improving Software Development Processes
	2.1 CMMI
	2.1.1. CMMI, the “The Powerless Customer” and “The Unequipped Business Analyst”
	2.1.2 CMMI and Human Communication Ambiguity
	2.1.3 CMMI and “The Semi-equipped Tester”
	2.1.4 Summary of CMMI Analysis

	2.2. Agile Development
	2.2.1 XP and the “The Powerless Customer”
	2.2.2 XP and the “The Unequipped Business Analyst”
	2.2.3 XP and the “Semi-equipped Tester”
	2.2.4. XP and “Ambiguity of Human Communication”
	2.2.5. Summary of Agile Development Analysis

	3. Customer Oriented Software Development (COSD)
	3.1 Theoretical and Practical Foundation
	3.1.1. Stage 1 Idea (Requirements
	3.1.1.1 Business Analysis and Requirements
	3.1.1.2 Requirements Quality
	3.1.1.3 Idea (Requirements Transformation Risk

	3.1.2 Stage 2 Requirements (Design
	3.1.2.1 Requirements (Design Transformation
	3.1.2.2 Requirements (Test Specifications Transformation
	3.1.2.3 Requirements (Design Transformation Risk

	3.1.3 Design (Final Product Transformation
	3.1.4 Overall Risk Analysis

	3.2 Idea of the Future: COSD Paradigm
	3.2.1 What is COSD?

	References:
	Additional Resources:

