
Project Change, a Way of Life
Version 1

Jurgen Appelo
jurgen@noop.nl

www.noop.nl
April 13, 2008

Introduction
In this article I try to link complexity science with agile software
development. I attempt to show why there is no such thing as a best
software development method, why managing scope is a too simplistic
interpretation of the principle of “embracing change”, why corporate
standards for processes are a bad thing, and why you will never get
things exactly right.
The article includes comparisons to biology and other types of
complex systems, several little nuggets of wisdom, and some personal
experiences involving my car.
Change Is the Only Constant
Environmental change is a hot topic nowadays. And though the
possible causes for global warming are still being disputed – I’m quite
sure that it’s not my fault – everyone understands that people must
learn to adapt to a changing environment. Trying to fight change is like
me trying to prevent traffic jams. There’s no point in being silly, other
than offering some form of entertainment to those who know better.
The ubiquity of change is nothing new, of course. The global climate
has never stopped changing. The oceans and the sun have their moods
too, ice ages come and go (see Figure 1). I deal with these changes by
buying nice clothes, or taking them off. My car has air-conditioning,
and someday I might swap it for a yacht, or an icebreaker.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 2 / 28

Figure 1: Ice ages and global temperatures
(Image created by Robert A. Rohde.)

The quote “change is the only constant” is attributed to Greek
philosopher Heraclitus, and in many environments only those who
“embrace change” – which is the subtitle of Kent Beck’s bestselling
Extreme Programming book – are able to survive. In biology, the
mechanism that enables continuous change is natural selection. One of
the best known examples of natural selection is the story of the
peppered moth (Biston betularia), made famous by H.B.D. Kettlewell.
During the industrial revolution, the black form of the peppered moth
became much more common than the typical pale form (see Figure 2).
The moths, which rest with open wings on tree bark, adapted their
wing color when the trees in polluted areas of Britain became dark and
sooty. (Air pollution in those days was a hundred times worse than it is
now.) Predator birds had an easy time picking out the pale moths,
while the dark ones became harder to find. The species simply
returned to its more typical pale wing color when the air cleared in
later decennia.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 3 / 28

Figure 2: Two forms of the peppered moth
(Both illustrations from H.B.D. Kettlewell's 1959 article, "Darwin's Missing Evidence." In
Evolution and the Fossil Record. San Francisco: W.H. Freeman and Company, 1978, pp.
28-33.)

These days it is an established fact that software products must often
be adapted to environmental changes, and not just by changing the
color of the packaging. The introduction of the euro as the new official
currency in Europe in 2002 required businesses throughout the
continent to spend many millions of French francs, German marks,
Italian liras, Spanish pesetas, Austrian schillings, Portuguese escudos
and Dutch guldens to be spent on software changes. Well-respected
authors like Robert L. Glass and Frederick P. Brooks have described
that successful software products often require more maintenance than
the unsuccessful ones. The reason being that people like to try their
favorite software in new unanticipated situations, and because
successful software tends to outlive the hardware and business
processes that were expected and considered during its initial creation.
For example, many software products were never expected to outlive
the 20th century and required a fix because of the Year 2000 problem
(often incorrectly called the millennium bug).
A changing environment leads to software change requests. The
Manifesto for Agile Software Development names “Responding to change”
as one of its core principles. This is in stark contrast with the more

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 4 / 28

traditional view that assumes that projects can be handled in stable
environments. And while continental Europe has never convinced the
British to switch to the euro, the British have been quite successful in
convincing continental Europe to switch to the PRINCE2 project
management method. This method – an acronym for “Projects in
Controlled Environments” – is an example of a traditional view on
project management. It assumes that outcome, time and resources in a
project can be pre-defined, and that the environment is controlled. But
if environments could be controlled the peppered moth might have
found it easier to change the color of the tree bark, instead of its own
wing color. (And I would have bought myself an open car instead of a
car with a glass roof.)
Three Ways to Change a Project
It might be worth pointing out that a changing environment does not
necessarily translate to a changing project scope (new features or revised
quality). The two other sides of the Iron Triangle (see Figure 3) are time
and resources, and they are also subject to change (as in a changed
timeline or team velocity, or changes in people and tools). In this
respect it is interesting to note that agile methods usually describe only
processes for handling scope change. I know of no methods explicitly
defining processes for handling variable time or variable resources. In
fact, the most common argument is that, of the three variables time,
scope and resources, only time and resources can be “fixed”, or
specified as being “constant”, while scope remains the one that is
allowed to vary. (Apparently, this is what time boxing is all about.) But in
a real environment everything is a variable. Scope is simply the easiest of
the three to use for adaptive strategies in situations where any of the
three variables has changed due to external pressure. This is why agile
methods focus on managing variable scope, but it doesn’t mean that
time and resources need no management. They do. Practices for
resource management (like recruitment and tools selection) and time
management (like productivity management and individual efficiency) are
essential in any organization and any project. They are just not
normally covered by standard methodologies, and you will have to
discover the best practices elsewhere.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 5 / 28

Figure 3: The Iron Triangle: Managing scope, time and resources
When I’m driving in my car to attend an important meeting, I often try
to take care of all three variables scope, time and resources. Traffic
jams and road works are a nuisance in my country, which means that I
have to take into account the possibility of increased scope (alternative
and often longer routes that get me where I need to be). My
appointments (expected time and duration) sometimes change
suddenly, always beyond my control, which is why I keep my mobile
phone with me wherever I go. And my beloved car might fail me
someday – only theoretically, of course – as my primary resource,
which is why I carry a 24-hour road assistance card with me. And I
always keep a bath towel in the trunk. You just never know when
global warming is going to hit us.
Change the Projects to Change the Products
When talking about changing environments, it is important to
understand that there’s a big difference between products and projects.
For many years people have been trying to compare projects, created
by different organizations, in different situations. Comparisons are
found in many reports and polls about best practices, project size and
project success. But what is a project? Is all the effort that we put into
version 1.0 of a system a complete project? Or do we distinguish
different projects when multiple teams have been working on different
subsystems? Does the same project include version 1.1 shortly released
after the first version? Or do we treat that version as a new project?

Scope
Management
(time boxing)

Resource
Management

Time
Management

Iron Triangle

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 6 / 28

Can we go to the extreme and aggregate all versions, released over a
time span of several years, as one big ongoing project? Or are they
necessarily different projects, with project boundaries defined by either
major or minor releases?

This is deeply confusing. Isn’t it strange that, after working in this
business for 15 years, I still have no clear picture of what constitutes a
project? I have come to the conclusion that I actually don’t like the
word. It is completely interchangeable with “work”, “foo”, “stuff” and
“things”. I don’t understand anyone who comes up to me and starts
talking about some project or other. Sometimes I want to grab people
by their shoulders, shake them and ask them “Please… Make sense!
Talk English! What do you mean??”
The standard view in other disciplines, like mechanical engineering,
civil engineering and electrical engineering, is that a project ends when
a product goes into production, and the maintenance phase takes over.
This arrangement works fine for motor engines, bridges and devices
for erotic electro stimulation. But in software engineering our products
are often used long before the projects are considered to be finished.
Besides, it is well known that the maintenance phase of a software
product often swallows up the bulk of a customer’s budget. This is
because, contrary to motor engines, bridges and interesting electrical
devices, most software products are never finished. So, what
constitutes a project? Here are some standard definitions:
• A project is a collaborative enterprise, frequently involving research or

design, that is carefully planned to achieve a particular aim. (Oxford
English Dictionary)

• A project is a finite endeavor – having specific start and completion dates –
undertaken to create a unique product or service which brings about
beneficial change or added value. (PMI/PMBOK)

• A project is a temporary organization that is needed to produce a unique
and pre-defined outcome or result at a pre-specified time using pre-
determined resources. (PRINCE2)

The textbook definitions do not seem to agree. A project can be either
temporary (finite) or endless; it can be either collaborative or

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 7 / 28

individual; it may have complete plans or just some start and
completion dates; and it can have a pre-defined aim or it allows for any
beneficial change. I’m afraid that this doesn’t answer any of my
previous questions. It only raises new ones!
Tool builders have muddled the waters even further by giving the term
“project” a technical and context-dependent meaning. A “project” in
our development environment does not match with the “project” as it
is created in our source control system, because both are (necessarily)
organized in a different way. Neither of them matches the “project” as
we have defined it in our issue tracking system, because issue
management covers a wider area than just code. And the “project”
folder on the network drive is different in its own right, because its
scope extends to any non-coding initiatives and activities that are in
some way related to the system that is under construction. With so
many views on our projects it seems like a wonder we are even able to
get some working products out the door.

Figure 4: A plethora of projects results in a sequence of products
The term “project” is context-dependent, and some arrangement of
projects (teams, subsystems, tools, etc.) is needed to produce a
successful product. Environments evaluate products, not projects,
because the products are tangible, contrary to the multitude of projects

Issue
Tracking
Project N

Issue
Tracking
Project M

Project Team
Subsystem A

Project Team
Subsystem B

IDE
Project X

IDE
Project X

IDE
Project Z

Source
Control

Project Q

Source
Control

Project R

File System Project

Product
Version 1.0

Product
Version 1.1

Product
Version 1.2

Product
Version 2.0

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 8 / 28

that were defined in order to have them built and delivered. Therefore,
when discussing success, I prefer to talk of products. Figure 4
illustrates this idea. Some configuration of projects (teams, subsystems,
tools) ultimately results in a sequence of products. We evaluate products
to see how successful they are in their environment, and whether they
need to change. And then we look at the projects to see how they need
to adapt to the required changes.
Many people will tell you that you have to have the right processes in
place in order to cope with scope changes. But this view is insufficient.
In my opinion, any part of the multitude of projects (people, tools,
processes and project configurations) is a candidate for change. In
order to respond to environmental changes, you may have to change
your people, or your tools, or your processes. You may even have to
change yourself.
Every Product Is Successful… Until It Fails
When is a software product successful? We all know industry reports
(particularly the infamous CHAOS report of the Standish Group) are
always saying that only a small number of software products are
“successful”. But what does that mean? People have been struggling to
find a proper definition for years and they are still not in agreement.
One traditional view has it that a product is successful when it is
delivered on time, within budget, and according to specifications. Others say that
a product is successful when it matches a customer’s expectations, paying
back its investment in the form of business value created, as laid down
in a properly defined business case. Another view is that a product is
successful when the stakeholders are happy, whatever this may signify at the
time of delivery. But I think they are all wrong.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 9 / 28

Figure 5: Dinosaurs versus Great apes (incl. humans)
(Image created by Matt Martyniuk.)

Do you think dinosaurs were successful? And do you think humans
are successful? I suspect that many people answer ‘no’ to the first
question and ‘yes’ to the second. However, dinosaurs have ruled the
earth for about 150 millions years, while the family of hominidae (all
species of great apes) now exists for six million years -- with humans
wreaking havoc on the planet’s surface for less than 200,000 years. It
appears that humans still have plenty of time to prove that they are
more successful than dinosaurs (see Figure 5). And do you think
horses are successful? My daughter probably does, but she wouldn’t
have found the late and great paleontologist Stephen Jay Gould on her
side. Gould pointed out that almost all species of wild horses (of the
Equus ferus family tree) have vanished from the earth. Only Equus ferus
caballus (the domesticated horses) can be considered successful in the
sense that they have adapted and allowed Homo sapiens to sit on them,
which is likely to have prevented their extinction. I think it is apt to say
that every species is a success until it fails and goes extinct. Given the
fact that 99.9% of all species are now extinct, failure appears to be in
abundance.
I believe that every software product is a success, until it fails.
Some products that I have contributed to were a success for only a
very short time, until the customers cancelled them because they
finally figured out what they really wanted, which was something
completely different. Even though these products never made it to

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 10 / 28

their first release dates, team members and customers had been
working happily together, but the business cases changed and they ran
out of budget. I have known other products that were on time, within
budget and according to specifications when, at the time of their first
release, it appeared that they could not live up to our customers’
expectations. Did they fail? Not really, because we found ways to
recover from our errors, adapting to the new feedback, and delivering
versions that won back our customers’ trust. I also know products that
are still being funded, several years after their first release date, despite
the fact that they never returned their investment. It seems they are
able to postpone their failure by retaining some stakeholders’ support,
for whatever reasons that may be. Maybe some people see value in
these products simply because it gives them something we never had
anticipated. Maybe they just enjoy sitting on them.
Last year I bought myself a new car, and I consider it a big success (see
Figure 6). It looks fast, fancy and furious; it has a big sound system,
and it has blue lights shining on the pedals. (I really like the blue
lights.) However, those are not the main reasons for my contentment.
I love my car because I love driving. To me, a car is a success as long
as it takes me where I want to go, in a comfortable way, and without
giving me any trouble. Basically, anything on four wheels that goes
faster than I can walk is a successful vehicle to me. This includes quads
and golf carts, and skelters with non-climate-neutral propulsion. But I
know my car will only be a success as long as it lasts, because someday
in the future I will have bought myself another one.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 11 / 28

Figure 6: Me and my car
Success is the continued absence of failure. In my opinion, other
definitions seem to be insufficient. Products can be of some value to
someone, even though they are not on time and within budget; even
though they never returned their investment; and even though they
may not satisfy all stakeholders. Species are successful until they go
extinct. My car is successful until the day it fails to please me. Products
are successful until the day they have lost all users. The media player
Winamp3 was not as big a success as Winamp 2 was. Due to many
problems with version 3 it lost many users and people were reverting
to the older stable version. Nullsoft, the creators of Winamp,
responded appropriately by adapting and merging the best parts of
both versions into Winamp 5. (Microsoft faces a similar situation with
Windows Vista versus Windows XP, which makes everyone wonder how
Microsoft is going to adapt.) The principles of embracing change and
continuous adaptation are intended to postpone the inevitable
moment of losing the last user. But all software products will fail
someday. I’m 99.9% sure of that.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 12 / 28

Everything Is Relative, Fitness Too
The success of a product is always relative to its environment. I
consider my car to be quite a success. The blue lights shining on the
pedals, and the sound system pounding on my eardrums, have
contributed significantly to this perception. But I’m sure some other
cars would have been an even bigger success, possibly with even
prettier lights and heavier sound, if only the size of my purse had
matched the size of their price tags. I also know other people would
never care for my car. They have other criteria to measure their
favorite vehicles against. Some feel happiest when driving a second-
hand pink mini-bus, preferably without air-conditioning. Some don’t
even care for blue lights on the pedals.
When discussing the success of species, biologists prefer to talk of
fitness. Like success, fitness is relative. There is no absolute fitness in
nature because there is no common scale to measure it against. Fitness
depends on the niche a species is filling, the environmental conditions
that it has to cope with, and any other species that happen to exist in
that same environment. It is said that species coevolve. They often have a
hard time reaching and maintaining their fitness levels because they
keep adapting to each other. Natural selection makes sure that species
change to keep up with changes in their environments.
The only useful measure of success (or fitness) of a software product is
people’s continued investments in it. The fitness of a species is
determined by its ability to consume energy and transform it into
offspring. The fitness of a product (including all its copies) is
determined by its ability to consume people’s time and money,
transforming it into business value. Selection pressure in software
development is the pressure that products are under not to lose their
users. As with species, selection acts on the phenotype of software
products – the set of all properties as perceived by the environment
(see Figure 7). This includes functions, qualities, pricing, packaging,
etc. Products can lose their users because functionalities do not meet
with the customers’ (changed) expectations, or because performance
and security, or some other quality criteria, do not conform to the
latest standards. Products can also lose their users because a competing
product has entered the market, or because the need for it has
evaporated, or simply because all copies of the software broke down

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 13 / 28

on the same date. There can be many reasons for the loss of users, but
the end result is always the same: Fitness drops to zero. The product
dies.

Figure 7: The project (genotype) and the product (phenotype)
Adaptation of products takes place at the level of the genotype. For a
species the genotype is its DNA, which “programs” the individual
organisms with strategies for survival and reproduction. For software
products the genotype is the set of all practices applied during their
construction. It is the sum of scope, resources, time and processes in a
software project that determines the fitness of a product, its chance of
survival and the business value it delivers. In software projects we try
to find out whether customers are going to like the product, and
whether quality criteria will be up to the latest standards. In software
projects we have to keep an eye on any competing alternatives that
customers might choose from, and we have to make sure that the
business case for a product’s existence remains valid.
The fitness of anything, whether it is a car, a species or a software
product, is always relative to its environment. It is evaluated on the
basis of its external (phenotypic) properties, and anticipated by internal
(genotypic) programming. If you understand this simple mechanism,
you will understand that survival is a never-ending struggle to improve
resources and processes in software projects. Continuous
improvement is – quite literally – a way of life.

phenotype genotype

Product
Version 1.0

Product
Version 1.1

Product
Version 1.2

Scope

Resources

Time

Processes

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 14 / 28

What’s Driving Our Improvements
The first couple of years after getting my driver’s license, I was a really
bad driver. Taking a seat behind the wheel (if I could find the correct
one) really freaked me out. I vividly remember several cases of horror
and despair when the engine of a car failed on me right before a traffic
light went green. But after two flat tires (simultaneously) in the Nevada
desert, one flat tire in the Interior of Brazil, a broken gear box in the
Interior of South Africa, and ending up in a ditch alongside the Loch
Ness Lake in Scotland, I eventually learned to handle all kinds of
circumstances.
A performance system is the name for the collection of rules in a complex
system that determines how it behaves under the input that it receives
from its environment (see Figure 8). A rich performance system is one
with lots of rules for many different situations. My driving style is a
performance system which I have been tuning to near perfection over
a period of eighteen years. For example: I now know that I should
never drive in reverse over a strip of road spikes, that while driving in
the night in underdeveloped countries I should watch out for pot
holes, that I must treat the gear box of cheap rental cars with gentle
care, and that the shoulder of a road may not be the best place to turn
a car around in a pitch dark night. They never told me these things
during my driving lessons. I had to experience them, and I had to
update my performance system accordingly by adding and updating
the rules that I keep in my head. In complexity theory this is called rule
discovery.

Figure 8: A performance system of three rules

Rule 1: if A and B then X

Credits: 10

Rule 2: if A and B then Y

Credits: 11
Rule 3: if A or B then Z

Credits: 9

performance system

environment Condition A Condition B Condition C

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 15 / 28

Another part of the learning process in a complex system is called credit
assignment. Every time I like the results of having applied a rule, I assign
one more credit to it. The applicability of the rule, given the context of
a situation, is confirmed and its importance is increased for that
situation. Likewise, every time a rule did not give me the result I liked,
I deduct one credit, and its relative importance for the current
situation is decreased. Of course, this credit assignment is something I
rarely do consciously. For example: I never change to a lane on the left
while I’m passing a car on the right. After having once been hit on the
side by a truck that I was overtaking, I always want to keep an eye on
every vehicle that I’m passing by. After eighteen years of driving I have
a very complex set of rules, most of them applied on a subconscious
level, with some rules being very important but only in specific
situations (rules 1 and 2), while other rules are less important but
applicable to a wider variety of circumstances (rule 3).
Competition of Rules
In a performance system there are usually contradictory rules with
different priorities, as with rules 1 and 2 in Figure 8. The system will
select either of these two rules, when applicable, with the chance of
selecting rule 2 being slightly higher, given the higher credits that it has
earned. However, in a changing environment the credits that are being
assigned to the rules might change. When rule 2 ceases to lead to
satisfying results rule 1 may swing back, receiving more credits than
rule 1, and consequently being selected more and more often. The
performance system built into the DNA of the peppered moth is
responsible for having its wing color swung back and forth between
black and white. And the performance system inside my head is
responsible for alternating between several routes for driving between
my home and the office, where I let my selected route depend on
weather conditions, the time of day, road works and whether or not
I’m in the mood for my favorite (and expensive) Italian caterer.
Organizations maintain their own performance systems. Some do this
explicitly, in the form of documented processes, but most maintain
rules in the minds of employees and team members. Rule discovery is
the principle of learning new practices and new ways of doing things.
Credit assignment is the principle of finding out, by experience, which
of these rules work best in which situations. Project evaluations,

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 16 / 28

introspections, reflection workshops, daily standup meetings and
several other best practices have been proposed by experts to assist
organizations in their rule discovery and credit assignment processes.
But one should not forget that these best practices are themselves
rules in the performance system, and should likewise be subjected to
the credit assignment principle. Furthermore, people always discover
and prioritize rules, even without workshops and meetings. Rules
about handling customer emails, rules about high-priority maintenance
issues, rules about handling changes to the planning, rules about
vacation and sick days, rules about file names and storage, rules about
beta and live deployments, and many, many more. Any formal
software process improvement initiatives in an organization contribute
to the performance system, but most rule discovery and credit
assignment is done in people’s minds. They don’t read manuals while
driving their car, and they don’t read manuals while responding to
input from the environment. There’s nothing wrong with that. It’s just
the way the world works.
What we can learn from all this is that we should be prepared to let
best practices compete with each other. It’s OK to occasionally try out
a new way of carrying out system tests, or a new way of documenting
requirements. And even when there are company-wide standard
procedures for source control or daily standup meetings, every now
and then you should try some new (or old) alternatives, and carry out a
credit assignment. It is essential for any organization that needs to
adapt quickly to a dynamic environment.
There are performance systems in biology and many other disciplines.
They enable us to learn how complex systems manage themselves. My
experiences while driving taught me how to free myself from the road
spikes, pot holes and ditches that I got myself into. Unfortunately,
hazards on the road are always changing. I haven’t seen any road
spikes in ten years, but nowadays it is important to watch out for
people wearing iPods. Who knows what the dangers are in ten years?
The Race to Avoid Failure
Despite all our efforts to adapt and improve, it sometimes seems to
have no effect whatsoever. Developers are never completely happy
with the tools they are using. Users are never fully content with the

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 17 / 28

software we build for them. And team members are never quite
satisfied with the processes in their software projects. Why is that? The
answer can be found in an old children’s book from the 19th century.

Species do not evolve with the aim of becoming better at what they
do. They evolve to suppress the risk of extinction. Success is the
postponement of failure. Scientists have found that the ability of
families of species to survive does not improve over geological time.
From the fact that the risk of extinction in ecosystems has never
dropped, it follows that species have never succeeded in becoming any
better at avoiding it. This means that the goal of evolution is not to
lower the chance of failure. It is to prevent the risk of failure from
increasing. There are examples of species, including crocodiles, pandas,
sharks, sturgeons and horseshoe crabs, often called living fossils, that
haven’t changed an eyelash in a million years. Apparently, their
environments didn’t require them to change. And when environments
don’t change, species don’t bother with the effort either.
When species change, it is usually not just because of changed weather
conditions. Species don’t lead isolated lives. They are linked
inextricably and they often need to adapt to each other’s changes. For
example, plants might evolve tougher surfaces and chemical repellents
to fend off hungry insects, while at the same time the insects evolve
stronger jaws and chemical resistance mechanisms. Species change to
remain in the game. It is like an evolutionary arm’s race, which has
been given its own colorful name: The Red Queen Race. The term is
taken from Louis Carroll’s “Through the Looking-Glass”, where the
Red Queen said to Alice:
“It takes all the running you can do, to keep in the same place.”
The Red Queen Race is an evolutionary hypothesis describing that a
complex system needs continuous adaptation in order to maintain its
current fitness, relative to the systems it is co-evolving with. Some
argue that the Red Queen Race, or the principle of co-evolving
species, is an even more important driver of evolution than any other
kind of environmental changes.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 18 / 28

Figure 9: Alice and the Red Queen
(Image used with permission from CartoonStock.com.)

The Red Queen Race explains why most users are never completely
satisfied with the software products they are using. After all, even
though the products get better with each release, the users keep adding
new requirements. Software products do not evolve to become better
at what they do. They evolve to postpone the (inevitable) moment that
they will be discarded. Success is the postponement of failure. And
when environments don’t change, software vendors don’t bother
changing their products either. And why should they? Lack of strong
competition is why Microsoft did not release any new versions of
Internet Explorer, after version 6, for more than five years. One might
even argue that the threat of being pushed back by competing
products is an even more important driver of software evolution than
the new requirements of existing users. A vendor may be able to
ignore its users, but it cannot ignore its competition.
My current car cost me twice as much as my first one, and it has ten
times the number of features. But has it made me any happier? Only

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 19 / 28

for a short while, I’m afraid. The fact that it has just one parking
sensor in the rear, and not on any of the other five sides, is starting to
get on my nerves. And the heating in the seats takes too long to climb
to a comfortable temperature. And the brightness of the blue lights on
the pedals cannot be adjusted. Day by day, ever so slowly, my car is
falling behind in the Red Queen Race.
The Rise and Fall of Systems
Every complex system (whether DNA, a brain, a business company, a
teenage street gang or a software project) is constructed from a large
number of elements, connections and rules. One configuration is just
one version out of the many different possible combinations of the
parts that comprise the system. Now I will challenge your imagination
by asking you to visualize that all these different configurations of a
system are points on a one-dimensional scale. Two configurations are
said to occupy two adjacent points on this scale when they differ in
only one element, rule or connection. For example, you may compare
two snapshots of a software project that are similar in every respect,
but with one resource or best practice changed into some alternative.
(I understand that this may stretch your imagination to the limit, but
please, bear with me.) Likewise, two configurations are said to occupy
two points far away from each other on the scale when the two
versions of the system are completely unlike each other. For example,
you can compare two snapshots of a software project, with all
resources and practices changed into alternatives. Of course, properly
drawing up all combinations of a real system in a graph would actually
require thousands, millions or even billions of dimensions, but I’m
afraid that this would be a little hard to turn into an ordinary chart on
two-dimensional paper. Therefore I will settle for a more abstract
visualization, using just one dimension.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 20 / 28

Figure 10: Fitness landscapes, easy (A), rugged (B) and random (C)

Given a specific environment we can imagine that (theoretically) one is
able to measure the fitness (or chance of survival) of all configurations
of the system. When plotted in the second dimension this gives us
what system theorists call a fitness landscape (Figure 10). It plots the
distribution of fitness of a system (the phenotype) based on a scale
that represents all possible combinations, or states, within the system
(the genotype). This fitness landscape is static as long as the
environment is static. But we know that environments are never static,
and changes in the environment usually require changes to our
software projects. This is because a different environment results in a
different fitness landscape for the same system.
When we change one part of a system (one gene, one employee, one
teenage gang member, one best practice) into something else, it
follows that the system moves either to the left or to the right on the
fitness landscape, probably making it either more or less fit. Complex
adaptive systems are able to make these changes to themselves, and those
that are able to find the highest peaks on the fitness landscape are the
ones most able to survive. Systems that have the ability to tune

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 21 / 28

themselves in such a way are said to be doing an adaptive walk across
the fitness landscape (Figure 11). An adaptive walk is the process by
which a system changes from one configuration to another, often by
gradual steps, in order to stay fit. The system 'walks' across the fitness
landscape, and each step may lead to an improvement in the
performance of the system against the (changed) criteria imposed on it
by the environment. Software projects do their adaptive walks by
always adding and replacing features, qualities, people, tools and
processes.

Figure 11: An adaptive walk across the fitness landscape
For biological systems the search across the fitness landscape is not an
intelligent one. DNA is mutated in random ways, and species do their
adaptive walks in all directions, including every wrong one. But natural
selection comes to the rescue by making sure that the individual
organisms that happen to have landed (blindly) on a higher position on
the fitness landscape are the ones most successful in reproducing
themselves. Human-made systems apply a different strategy. We
cannot afford to simply try out every combination of features,
resources and processes. In our case not natural selection but conscious
selection comes to the rescue. Humans have the intellectual capacity to
make an educated guess on where the higher peaks are, even though
the fitness landscape is an abstract thing. We balance features against
qualities, we fire and hire employees, we discard and select tools, and
we add and rework the processes in our software projects, hoping (and
often expecting) to walk in the right direction, improving the fitness of
our systems along the way.
Shaping the Landscape
The shape of the fitness landscape is directly related to the
interconnectedness of a system. This is easy to understand. Suppose
that all elements in a software project have no influence on each other.
In that case replacing one resource or process with another will have

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 22 / 28

no effect on any other part of the project. Each individual element has
its own isolated effect on the adaptive walk across the fitness
landscape, which is positive, negative or neutral. It then follows that
there is one and only one best configuration for the entire software
project, namely the one in which each individual part has a positive (or
neutral) effect on the system's fitness. This configuration corresponds
to the single highest peak in landscape A of Figure 10.
You will understand that such a situation is unrealistic. In most
complex systems there is a level of interdependence between the
individual elements. Genes for the growth of feathers and genes for
the growth of wings are related in such a way that they have a
combined effect on an animal's fitness. The same applies to genes for
fins and genes for gills. But an animal born with an arbitrary mixture
of these, like a combination of feathers and fins, is unlikely to be fit
enough to survive. There is a mathematical principle underlying the
interdependencies of elements and the form of the fitness landscape.
Figure 10a applies to systems with no dependencies among their
elements. Figure 10b applies to systems where elements have moderate
dependencies. Figure 10c applies to systems with many
interdependencies.

Figure 12: An impossible walk across a chaotic landscape
It appears that, with a large number of interdependencies in a system,
the height of the accessible peaks falls. It results in a fitness landscape
with a random collection of peaks, not one of them clearly being the
highest. This is called the complexity catastrophe and it limits the potential
of a system to achieve an optimal performance (Figure 12). Therefore,
the ruggedness of a fitness landscape is a crucial property. Systems
should never have too many interdependencies, or their efforts in
adaptation become chaotic. It is the reason why there should be only a
moderate interdependence between features, qualities, people, tools
and processes in a software project. Changing any one of these in a
project must never lead to a chaotic walk over the fitness landscape, or

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 23 / 28

else any improvement effort will yield completely unpredictable results.
The high cohesion, low coupling principle is well known among software
architects. It means that classes must be well-formed (high cohesion)
and that there shouldn’t be too many interdependencies (low
coupling). Something similar applies to processes. It is often claimed –
even by Kent Beck himself – that Extreme Programming is a method
with many interdependencies. This might mean that you cannot
replace a couple of processes of XP or your improvement initiatives
will run into chaos. Other methods consist of more loosely coupled
practices, which makes them easier to adapt in a changing
environment.
Never Forget How to Run
Changing environments and the Red Queen Race have dramatic
implications for fitness landscapes. They make it seem as if they are
made of rubber. It is as if the peaks and valleys are always on the
move, and forever rising and falling. A system with a configuration
that was fit yesterday may be unsuitable for the environment that it
must live in tomorrow. Today’s best practices may be tomorrow’s
worst practices. Species, business managers, teenage gang members
and project managers have to keep changing, because it takes all the
running they can do just to stay on top of a moving peak. They have to
change to stay in the game, and if a peak drops and turns into a valley,
they quickly have to find themselves another peak.
In relatively stable environments the fitness landscape doesn’t change
much. Once an organization has found a high peak, it can comfortably
stay there. It can switch from adaptation to optimization, making sure
that it makes use of its situation in the most efficient and effective
ways possible. But with changing environments adaptation is more
important than optimization. In stable environments, systems tend to
lose the ability to change. People forget how to change when the
environment they live in has always seemed the same. The danger is
that they may not notice it when their comfortable peak has been
dropping slowly and turned into a valley. I believe that contentment
with the success of your software projects may be your worst enemy.
Your once brilliant colleagues may suddenly turn out to be way behind
the times. The tools you have been using may not be giving you the

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 24 / 28

best results anymore. And your favorite development method, which
was once an asset, may have slowly turned into a liability.
This is what it means to be agile.
The Agile Manifesto never said you should stick to XP or Scrum or
any other method. It says you must understand and embrace change.
This is why improvement of resources and processes must never stop.
It must be your way of life. Don’t ever be content. Keep running!
Keep changing features, qualities, people, tools and processes. Take a
short break every now and then, review the landscape to see what the
peaks are doing, and then resume the race. (It might help if you have a
nice car.)
Conclusion
In this article I have argued that, because change is the only constant,
there is no such thing as a “controlled” environment. There is only a
changing environment, which constantly evaluates your products (the
phenotype) and you have to respond to environmental changes by
improving your projects (the genotype). Your improvements are not
limited to changing features. It also requires changing qualities, people,
tools, processes, and project configurations. These changes are
necessary to postpone failure, for as long as possible, which equals the
loss of all users of your product.

You are not alone in your improvement efforts. Your users are
changing too, and so are your competitors. This is called the Red
Queen Race, because all coevolving parties have to keep improving
just to stay in the game. Your organization is a performance system
that needs to be adaptive by allowing the competition of best practices.
Strict enforcement of standards limits your organization’s ability to
respond to environmental changes. Another thing to watch out for in
your software projects is the interconnectivity of all things, which
should not be too high, because it leads to improvement efforts being
chaotic. There is also the risk of contentment with success in a
relatively stable environment, because your organization might have
forgotten how to adapt when the time to change is near.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 25 / 28

Note: This article is to be part of a book I’m writing about complexity theory and
software development. You may follow my efforts, and silently watch me struggling,
on www.noop.nl.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 26 / 28

Sources and References
“Manifesto for Agile Software Development” <http://www.agilemanifesto.org/>
“Dinosaur” <http://en.wikipedia.org/wiki/Dinosaur>
“Euro” <http://en.wikipedia.org/wiki/Euro>
“Great ape” <http://en.wikipedia.org/wiki/Great_ape>
“Heraclitus” <http://en.wikiquote.org/wiki/Heraclitus>
“Ice age” <http://en.wikipedia.org/wiki/Ice_age>
“Living fossil” <http://en.wikipedia.org/wiki/Living_fossil>
“Project” <http://en.wikipedia.org/wiki/Project>
“Project management” <http://en.wikipedia.org/wiki/Project_management>
“Red Queen” <http://en.wikipedia.org/wiki/Red_Queen>
“Wild horse” <http://en.wikipedia.org/wiki/Wild_horse>
“Year 2000 problem <http://en.wikipedia.org/wiki/Y2K>”
“Winamp” <http://en.wikipedia.org/wiki/Winamp>
Beck, Kent (2005) Extreme Programming Explained: Embrace Change. Upper Saddle

River: Addison Wesley
Brooks Jr., Frederick P. (1995) The Mythical Man-Month: Anniversary Edition.

Addison Wesley
DeMarco, Tom and Lister, Timothy (1999) Peopleware: Productive Projects and Teams

(Second Edition). New York: Dorset House
Gell-Man, Murray (1994) The Quark and the Jaguar: Adventures in the Simple and the

Complex. New York: Owl Books
Glass, Robert L. (2003) Facts and Fallacies of Software Engineering. Boston: Addison-

Wesley
Gould, Stephen Jay (2002) The Structure of Evolutionary Theory. Cambridge: Belknap

Harvard
Highsmith III, James A. (2000) Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems. New York: Dorset House Publishing.
Holland, John H. (1995) Hidden Order: How Adaptation Builds Complexity. New York:

Basic Books.

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 27 / 28

Lewin, Roger (1992) Complexity: Life at the Edge of Chaos. Chicago: University of
Chicago Press

Mallet, Jim (2003) “The Peppered Moth: A Black and White Story After All”
<http://www.talkreason.org/articles/mallet.cfm>

Miller, John H. and Page, Scott E. (2007) Complex Adaptive Systems: An Introduction
to Computational Models of Social Life. Princeton: Princeton University Press

Office of Government Commerce (2002) Managing Successful Projects with PRINCE2
(Third Edition). Stationary Office

Solé, Richard and Goodwin, Brian (2000) Signs of Life: How Complexity Pervades
Biology. New York: Basic Books.

Standish Group (1995) The Standish Group Report: CHAOS.
<http://www.educause.edu/ir/library/pdf/NCP08083B.pdf>

Waldrop, M. Mitchell (1992) Complexity: The Emerging Science at the Edge of Order and
Chaos. New York: Simon & Schuster

Copyright
This work is released under a Create Commons License. You are free
(and encouraged) to copy, distribute and transmit the work, and to
adapt the work, provided you attribute the author. Please send it to
your colleagues, friends, family, neighbors and local zoo.
http://creativecommons.org/licenses/by/3.0/

Project Change, a Way of Life

(c) 2008 Jurgen Appelo 28 / 28

Profile
Jurgen Appelo is Chief Information Officer at
ISM eCompany (www.ism.nl), recently rated as the
#1 fastest growing technology company in
The Netherlands. He leads a horde of 50 software
developers, development managers, project
managers, consultants, quality assurance managers,
service managers and kangaroos, some of which he
hired accidentally.
Jurgen is primarily interested in software engineering, quality
improvement and complexity theory, from a manager’s perspective.
He is trying to write a book about this, and he keeps track of it on his
blog (www.noop.nl). However, sometimes he puts it all aside to do
some intensive programming himself, or to spend some time on his
ever-growing collection of science fiction and fantasy literature.
Jurgen lives in Rotterdam (The Netherlands) -- and sometimes in
Brussels (Belgium) -- with his partner Raoul. He has two kids, and an
imaginary hamster called George.

