
Test
Smarter
DELIVERING APPLICATIONS THAT WORK

WHITE

PAPER

June 2001

Test Smarter ii

Contents

Why Test Smarter?...1
Why is Application Testing a Challenge?..3
What is Needed to Test Enterprise Applications?...7
Meeting the Challenge with Relational Tools ..9
Test Smarter with Proven Technology..12

2001 Princeton Softech. All products or name brands are trademarks of their respective holders.

Test Smarter 1

Why Test Smarter?

Application testing for accuracy, reliability and quality has never been
more important. Why? Because the applications that once merely
supported your business are today a critical element in operating your
business. Companies depend on sophisticated applications for customer
relationship management, electronic commerce, financial reporting and
more. In turn, these applications rely on relational databases to store and
manage the underlying enterprise data.

Now, more than ever, companies face new challenges when designing
effective and efficient testing strategies for relational database
applications. Incomplete or inaccurate test data means inaccurate testing,
which can lead to disaster. Yesterday, when an application failed, a
company was simply inconvenienced. Today, that same company may
find its name on the front page of the Wall Street Journal.

Testing Smarter offers a Competitive Advantage

Testing smarter means streamlining the application testing process to be
more efficient, consistent, accurate and cost effective. So why test
smarter? Because quality applications supported by development “best
practices” provide a competitive advantage. Testing smarter can deliver
dramatic results in the following areas:

• Application Reliability — Today’s applications drive revenue and
empower sophisticated marketplace initiatives. Customers and partners
interact directly with these “customer-facing” applications, which have
a huge strategic impact. How important is application reliability to
your business?

• Time to Market — Shorter development cycles must be achieved, yet
quality testing takes time, and this often means that deploying new
releases to customers, suppliers and employees is delayed. How
important would it be to your business if you could significantly
reduce testing time without sacrificing quality, thereby improving time
to market?

Test Smarter 2

• Cost of Quality — The costs associated with resolving application
defects in the production environment are as much as 10 to 100 times
greater than if these defects are resolved in the development process.
How would your business fare if application defects were discovered
in production? Could your company withstand the cost of business
disruption resulting in the potential loss of customers, suppliers and
revenue?

Testing smarter means delivering quality applications. However, some
development organizations are not focused on planning and managing the
testing process within the application life cycle. Testing is often
considered a lower priority relative to development when, in fact,
designing a comprehensive testing strategy can be as challenging as
designing the application.

Many organizations are reluctant to make a significant investment in
testing, allocating the money to other areas. However, without a
commitment to quality assurance, the business consequences could be
significant. Application testing is a requirement throughout the application
life cycle. Any investment in an effective application testing strategy can
increase return on investment (ROI) over the long term.

In today’s market, quality is becoming a competitive differentiator. If
companies want to be competitive, application testing must be a high
priority.

Test Smarter 3

Why is Application Testing a Challenge?

Typically, when a new application is developed or an existing application
is modified, a test database is created, usually based on a clone of the
production database. Special test cases may need to be added before
testing can begin.

After test cases are executed, the results must be verified to ensure that the
application program is working as designed. Based on the results of this
verification, some problems may need to be corrected, and the test data
would need to be refreshed before testing continues.

This process is repeated throughout the various testing phases (unit,
integration, system, load, regression and acceptance testing) until the
application is migrated into production.

The goal is to create a repeatable testing process that is automated as much
as possible to improve application quality, reduce time to market and
minimize costs.

Complexities of Testing with Relational Data

The fact that most applications rely on relational database technology
introduces a major challenge for testing organizations. The application
data model may contain dozens, hundreds or even thousands of tables, and
just as many relationships, and data model complexity is not limited to
large-scale systems. Even a database of less than a dozen tables can
contain relationships that make navigating the data model difficult.

Without access to a generalized technology, the developers often have to
code sophisticated extract programs. It is a challenge to navigate the many
tables, rows and columns to create, manipulate and refresh the desired
database subsets without first spending countless programming hours.
And, because applications are always being enhanced, these extract
programs also have to be maintained to create valid test data.

Afterwards, there is no clear way to know that the results are complete and
referentially intact and no sure way to account for every possible
relationship in the original database because they are often enforced by the
application. Adding to the complexity is the challenge of handling
heterogeneous database management systems, legacy data and differing
data models.

Clearly, any comprehensive toolset must support these relational
complexities and “remember” to account for them in every extract,
compare or update operation.

Test Smarter 4

Integrating Data from Multiple Database Management Systems

Many applications require integrating test data from different database
management systems, such as Oracle, DB2 UDB, SQL Server, Sybase and
Informix. For example, it might be necessary to create test data from an
Oracle database running on a UNIX platform and include Oracle and DB2
UDB data from a database executing on a Windows NT platform. Adding
to the complexity, all database management systems have different
idiosyncrasies for handling data.

Heterogeneous systems are here to stay and evolving technology is a fact
of life. Quality testing must include seamless capabilities to handle data
from different database management systems operating on different
platforms.

Integrating Legacy (Non-Relational) Data

While relational databases have inherent complexities, the task of testing
an application that references both relational and non-relational data poses
an even greater challenge. For example, an order entry application may
require customer data from a DB2 Order Entry table and product data
from a VSAM inventory file. Legacy data stored in VSAM files or IMS
databases have different structures and cannot be integrated with relational
data easily without writing special code.

In this type of environment, an effective testing strategy must include
federated data access so data can be extracted and moved from legacy and
relational data sources to create a true subset of related data regardless of
the source.

Building a Test Database

Some of the more common approaches to building test databases include
cloning the production database and writing custom extract programs.
However, these methods are time consuming, labor intensive, error prone
and often provide inconsistent results.

Typically, it is impractical to clone an entire production database
comprising hundreds of highly interrelated tables just for testing purposes.
First, there is a capacity issue. Second, there is a quality issue — when
working with large test databases, developers may find it difficult to track
and validate specific test cases. In addition, test databases shared by
multiple users become corrupted, which hampers testing effectiveness.

Cloning an entire production database increases the time needed to run test
cases because there is a larger volume of data. In addition, the production
data may not be sufficient to support the specific test cases. It is much
faster to test with smaller, realistic subsets that accurately reflect the
production data without adding overhead to the testing process.

Test Smarter 5

At the other end of the spectrum, some IT organizations rely on “toy” test
databases that have been cobbled together by hand using custom coded
extract programs. Usually these databases fail to reflect the actual
complexity and variety in their production counterparts. The applications
are tested and put into production only to break down when they encounter
“live” processing conditions.

Creating, Editing and Masking Test Data

If test data is based on existing production data, it may be necessary to
handle complex data models characterized by referential integrity (RI)
enforced by the database and the application. Typically, the application
enforced RI does not adhere strictly to the database rules, exploiting
compatible (non-identical) data types, composite and partial columns, and
data-driven relationships. Test data needs to be defined in a way that saves
time and is repeatable.

Some techniques for identifying and creating test data include using
selection criteria or random selection, data partitioning/grouping, or
limiting the data by table or relationship. Without a generalized tool, any
of these methods involve writing special programs.

When there is no existing test data, it must be synthesized, which involves
more work. Sometimes a small set of data can be “multiplied” into more
data. When creating multiple sets of test data from a single original set, it
is necessary to modify primary key values to prevent creating duplicate
rows. Propagating keys is a critical capability for synthesizing test data.
When modifying the primary key value in the parent (or owning) table, it
is necessary to propagate those changes to the child (or subordinate) tables
to keep the relational sets intact.

Some application functions may require creating special test data to force
error conditions. In addition, with the focus on privacy, the ability to
transform or mask sensitive data is important. However, given the
complexities of relational data, editing the data to create special test cases
or masking sensitive data would be difficult without a capable generalized
toolset.

Validating the Test Results

Validating test results and identifying changes after each test run are
difficult at best. However, without a tool for comparing images of the test
data before and after a test run, identifying all the differences is next to
impossible. First, there are a variety of changes: inserts, deletes and
updates spread across hundreds of tables. Second, there may be
unexpected problems (for example, orphaned rows) as well as other
anomalies that may go undetected.

Test Smarter 6

An effective testing strategy must compare subsets of data to identify
differences. With relational data this means more than comparing row to
row. It means using data model intelligence to compare related sets of
rows.

Maintaining a Consistent Test Environment

Maintaining a consistent test environment ensures quality. However, most
cloned test databases are shared. This means that each time the test
database is modified it diverges further from the baseline test data,
resulting in a less than optimal test environment. It takes additional time
and resources to refresh the data to ensure accurate results on subsequent
test runs.

In addition, unless the extract process includes metadata, there would be
no way to accommodate changes in the data model during the testing
phases. Metadata is definitional data that provides information about the
structure of the data managed within an application or environment. For
example, metadata would document the structure of the database including
the tables, columns, relationships, views, triggers and so on.

A well-designed testing strategy must ensure a consistent and accurate test
environment. Working with predefined realistic subsets of data that can be
refreshed easily improves testing and overall application quality.

Test Smarter 7

What is Needed to Test Enterprise Applications?

IT organizations need access to technology that supports a smart testing
strategy — one that creates realistic, referentially intact subsets of
production data for accurate and efficient testing. They also need tools that
can browse, edit, compare and manipulate these subsets of related data
with speed and accuracy.

Selecting an Enterprise Testing Toolset

Any generally applicable enterprise testing toolset must address the
following:

Comprehensive Testing Capabilities

As long as there are modifications and enhancements, testing is necessary
at various phases throughout the application life cycle. The ability to
deliver applications that are thoroughly tested is an ongoing commitment
that requires comprehensive testing capabilities:

• A quality data migration tool should provide the capability to repeat
testing processes consistently throughout the application lifecycle.
This capability improves productivity because users can create and
reuse realistic and manageable test data.

• Intelligent browsing and editing capabilities can reduce time spent on
repetitive testing tasks.

• Comparison processing can identify differences in test results
automatically and identify problems that would otherwise go
undetected.

These tools should be readily available to all members participating in the
development and testing process to ensure a fast, easy and resource-
efficient test environment.

Guaranteed Accuracy

Who wants to employ an extract or comparison tool that cannot guarantee
to assemble 100% of the related data? Any generally applicable software
product for application testing must deliver 100% accuracy — no matter
how many tables, relationships or different database types exist in the
environment. Yet, this is a major difficulty for table-level migration
products and for products with limited support for complex data
relationships.

Test Smarter 8

The requirement to keep many related rows synchronized throughout the
testing process — all the while maintaining referential integrity — is a
huge challenge for a universally applicable software product. Most simply
cannot do it. And their users face concerns about accuracy and reliability.

Reusability

Quality application testing must be comprehensive, consistent and
repeatable. A generalized testing toolset must allow users to define, save,
share and reuse test specifications to extract, insert, update, edit and
compare test data. Consistency and accuracy must be ensured. Refreshing
the database should be fast and easy. These capabilities allow companies
to streamline application testing with a minimum of time and effort.

Scalability

How well will a testing solution work when the dynamics of your
application testing requirements change or expand? Application
development and testing environments are dynamic. The testing toolset
must handle any arbitrarily complex data model or the IT organization will
have extra work to do. Any software technology that claims to support
application testing must not impose artificial limits on the number of
tables or the kinds of relationships it handles — because that puts the IT
organization back into the custom coding business.

Test Smarter 9

Meeting the Challenge with Relational Tools

Princeton Softech’s Relational Tools enable IT organizations to meet
even the most complex application testing challenge by providing all the
fundamental components of an effective testing strategy:

• Extract referentially intact subsets of data with 100% accuracy to
create realistic test databases no matter how many tables or
relationships are involved.

• Insert or load subsets of related data to quickly build realistic test
databases. Update or refresh the test data consistently to preserve the
integrity of the test environment.

• Mask sensitive data to ensure compliance with regulatory requirements
for privacy. Transform test data to meet specific test case
requirements.

• Provide aged data for “time-dimensional” testing so that future events
(year-end processing, revision to effective dates and so on) can be
adequately tested.

• Browse and edit test data to force error conditions and resolve
problems. Reviewing data in its relational business context provides a
clear vision of the data model.

• Compare the images of the test data before and after exercising the
application to validate expected test results and identify anomalies
automatically and with pinpoint accuracy.

• Integrate test data from other database management systems (Oracle,
DB2 UDB, Sybase, SQL Server and Informix).

• Integrate DB2 and legacy data into the test environment and take
advantage of COBOL or PL/I copybook information for transforming
legacy records.

When these capabilities are in place:

• Developers can ensure that new application functions perform as
expected during unit testing and modifications do not cause problems
during integration testing.

• Quality Assurance staff can ensure that the entire system operates as
expected and validate that interfaces with other systems work properly.

• Business-unit users can ensure that the system meets their expectations
for functionality and performance during acceptance testing.

Test Smarter 10

• Database Administrators can spend less time on creating and
maintaining the test environment and more time on performance
tuning, backup and recovery processing and managing production
databases.

What makes the Relational Tools unique?

Princeton Softech’s Relationship Engine, at the core of the Relational
Tools, is a unique technology that understands and processes related data
from multiple tables and ensures that each test subset is always
referentially intact and logically complete.

For example, in a subset of customer data, one customer may have items
that are backordered while another may not. From one customer to the
next, the number of rows retrieved — from any number of tables — will
vary. But the Relationship Engine always gets the right rows for the right
customers — complete and intact — every time.

The Relational Tools use an active repository, the “PST Directory,” to
store the user-defined business rules (see Figure 1). The portion of the
PST Directory that stores data model information can be populated
automatically from the database or from any number of third party
dictionaries. In addition, users can define relationships that exist but are
not known to the DBMS.

Figure 1. PST Directory Stores User-Defined Business Rules

PST Directory

Relational
Tools

Administrator Defines
Extended Relationships

in Data Model

DBMS Catalog Third Party
Dictionaries

Test Smarter 11

Using the PST Directory, IT staff members can define, share and reuse
different Access Definitions that represent, in essence, varying subsets of
the database — related rows from many tables. Princeton Softech’s
Relationship Engine technology assembles all related rows from every
table into a single referentially intact subset.

What do the Relational Tools offer?

The Relational Tools extend beyond extracting data, allowing users to
copy, move, browse, edit and compare complete subsets of related data
(see Figure 2). Organizations can design comprehensive testing strategies
that include realistic test data while improving productivity and overall
application quality.

Figure 2. Testing Smarter with the Relational Tools

Create/Modify
Application

Create Test
Database

Edit Special
Test Data

TEST

Compare Test
Results

Refresh
Test Data

Go
Production!!

Correct Errors
Production Data

Move for DB2
Move for Servers
Move for Legacy

Move for DB2
Move for Servers
Move for Legacy

Compare for DB2
Compare for Servers

Access for DB2
Edit for Servers

Access for DB2
Edit for Servers

Test Smarter 12

Test Smarter with Proven Technology

Along with the need to test and deliver reliable applications, companies
that want to remain competitive must reduce the time to market and reduce
the cost of quality by resolving problems before applications are deployed.
IT organizations cannot risk an application testing strategy that is only
95% reliable:

• With the ability to create realistic test data that is referentially intact
and 100% accurate, the testing environment has the critical element
necessary for quality testing.

• With the ability to browse and edit that data in its relational context, it
is easy to create special test cases that exercise every facet of an
application.

• With the ability to compare test results before and after each test
scenario, the differences can be identified automatically, and
evaluating test results is faster and more accurate.

Why test smarter? Because it makes good business sense and can deliver a
greater return on investment over the application life cycle. The Relational
Tools provide proven technology and a truly universal solution to help
companies streamline application testing:

• The Relational Tools for DB2 provide capabilities to move, edit and
compare relational data. Move for Legacy extends these capabilities
to provide federated data access to legacy and DB2 data from different
sources.

• The Relational Tools for Servers provide capabilities to move, edit
and compare relational data using the industry leading database
management systems, including Oracle, DB2 UDB, SQL Server,
Sybase and Informix.

In addition, as long as the client connectivity is in place, it is possible to
manage data across different operating systems, including Windows 95,
98, 2000, Windows NT, OS/390 and UNIX.

The Relational Tools, for both DB2 and Servers, are the only products
available today with the required generalized software architecture. That’s
why hundreds of companies, including many of the world’s top IT
organizations, rely on the Relational Tools to test smarter every day.

princetonsoftech.com

111 Campus Drive
Princeton, NJ 08540-6400
Toll free 800.457.7060
Phone 609.627.5500
Fax 609.627.7799
 ref no: 27543-1

