Optimal Functional Flow Coverage in Test Cases with Functional Flow Matrix

Punit Sethi

Abstract

This paper addresses the importance of covering different possible functional flows of an application in Test Cases to ensure that the testing methodology follows a highly effective, reliable and systematic approach. It also describes how a formal documentation-based method can assist in achieving this objective while designing Test Cases as compared to a rough application flow analysis. Further, a Functional Flow matrix based technique is proposed that can be used to optimize coverage of application Functional Flows in Test Cases.
2Abstract

1. Introduction
3
2. The Functional Flow Matrix Approach
3
2.1. Identification of Test Scenarios
4
2.2. Identification of Unit Tasks
4
2.3. Determining Dependencies between Unit Tasks
5
2.4. Determining Test Case Flows
7
3. Pitfalls to the Approach
7
4. Conclusion
8

1. Introduction

The process of determining Test Scenarios for an application requires considerable analysis of the application to ensure that no particular functionality of the application remains untested. However, a much complex aspect that has to be analysed during designing of Test Cases is analysis of Functional Flow in an application. This is important since a certain functionality of an application may be expected to behave differently under different Functional Flows. For example, a “Login” webpage in a website may prompt for a username and password when the user is not logged into the system, but it may not display the same when the user is already logged into the system. From the testing perspective, it is important that the Test Case covers testing of login webpage for both the aspects – when user is not logged into the system and when the user is already logged into the system.
Generally, for common scenarios such as the one explained above, it may be easy to identify different possible conditions for a certain functionality, but with no formal technique, it is often very risky to design Test Cases in this manner. For example, “Registration” functionality commonly has some unique field (such as username) and thus, may often require a Test Case to test if two distinct registrations do not accept exactly same values, or perhaps a “Update User Information” functionality should not allow one to change to username to same as that entered by some other user during “Registration”. This demonstrates how simple and common functionalities also require in-depth analysis to ensure that Test Cases flows cover all the possible conditions. Moreover, Test Case coverage becomes much more complex yet important when the application and its functionalities are novel and complex.

2. The Functional Flow Matrix Approach
Functional Flow Matrix is a simple yet effective document that can be used to analyse and take into consideration, different possible functional flows in an application while designing Test Cases. It is based on the concept of dependencies between different functionalities.

A functionality X is said to be dependent on functionality Y if occurrence of Y affects the behaviour of X.
For example, the functionality of “Reservation Cancellation” is dependent on functionality of “Ticket Reservation” in a Ticket Reservation System since a reservation cannot be cancelled unless it is reserved earlier. So, “Reservation Cancellation” functionality would behave differently for the cases when reservation is already done and reservation is not performed. As a result, the test case flow for this functionality would require testing it without reservation being done earlier and also with a valid reservation performed earlier.
Such obvious dependency scenarios may often be easy to identify when we perform such dependency analysis between the functionalities subconsciously but, with Functional Flow Matrix, a thorough analysis of such dependencies between different functionalities enables higher confidence in quality of coverage of Test Scenarios.
2.1. Identification of Test Scenarios

The first step in testing an application always involves understanding the application requirements and its functionality. This typically involves identification of the major Test Scenarios in the application. For example, Login, Registration, Ticket Reservation, Ticket Cancellation, Ticket Status, etc may be common scenarios of a Reservation System. Hereby, one has to ensure that none of the functionality should be missed during identification of scenarios.

It is worth noting however, that identification of scenarios is different from determining different flows that each of these scenarios would cover. For example, a scenario such as “Cancel Reservation” may typically be identified, but one still needs to determine what flows this scenario may cover – this scenario may have a flow where we try to cancel a reservation that does not exist or try to cancel a reservation performed by some other user, etc.
2.2. Identification of Unit Tasks

Once the major scenarios to be tested are identified, one is required to magnify into each of the scenarios to determine exact way in which the scenario are to be tested. The first step to perform this magnification is the process of determining unit tasks.
A unit task is a set of one or more user-actions that will always involve a single flow of action within that unit task.
Some of the example unit tasks for a reservation system could be as follows:

i. Inputting a user-name and password and pressing Login button

ii. Inputting a set of user details and pressing Submit button for registration

iii. Entering user information to reserve a ticket

iv. Searching for a reservation status by inputting Reservation ID
v. Inputting a Reservation ID and cancelling the reservation.

For the first example in the above list, application may behave differently for entering valid/ invalid login information thus, exhibiting different flows. Here, one flow would be a user entering valid login details and thus allowed to login and another flow would be him entering invalid login details and thus notified with appropriate error message. But, the process of user entering username and password and then pressing login button would always remain same – thus considered to be having a single flow in it-self. So, we can consider this set of user actions as a unit task.
Similarly, suppose certain registration functionality is divided into two screens, where the first screen asks for username, password, address and has a checkbox for “I possess a mobile phone”. Now, only when this checkbox is checked, a second screen prompting for mobile information is displayed, other wise the user is registered straightaway. Here, we cannot term entire registration as a single unit task. It can be clearly seen that complete registration has two flows – one where user may opt for mobile information and other when he doesn’t. So, we would have two unit tasks here – one for the first screen and other for the second one.
However, it is very important to note that a unit-task cannot be mapped to a single user-screen/ web-page. Many complex applications may have multiple flows within a single screen. On the other hand, many times a set of screens/ web-pages may be part of a single flow only, thus forming a single unit tasks only.
The process of identifying unit task is the first step in creating functional flow document so it is very important to ensure that this identification is done in a correct manner to ensure correctness of subsequent tasks. The key to determine correctness of unit tasks is to ensure that no branching of functional flows exists within a unit task itself. If a unit task may contain a branching of flow within itself, such a branching may be missed during formation of functional flow matrix, thus leading to incorrect and incomplete analysis.
2.3. Determining Dependencies between Unit Tasks

The process of determining dependencies between unit tasks is the main component of the entire process of flow identification. One of the various ways in which this can be achieved is through formation of a functional flow matrix document.
A functional flow matrix may be created as shown in the below diagram:

	
	Unit Task 1
	Unit Task 2
	Unit Task 3

	Unit Task 1
	
	
	

	Unit Task 2
	
	
	

	Unit Task 3
	
	
	

Hereby, we would enlist each of the unit tasks identified earlier in a tabular manner. Please note that same set of tasks would be placed in the columns and rows. Once this is performed, we need to check for dependencies between each of these unit tasks one by one. We may thus, pick Unit Task X from a row and see if it is dependent on Unit Task Y mentioned in the column. If yes, we would mark “Yes” in the respective cell.
Following example would further clarify the process:
	
	Register
	Login
	Reserve Ticket
	Cancel Ticket
	Get Reservation Status

	Register
	
	
	
	
	

	Login
	
	
	
	
	

	Reserve Ticket
	
	
	
	
	

	Cancel Ticket
	
	
	
	
	

	Get Reservation Status
	
	
	
	
	

In the above table, unit tasks for the reservation system have been enlisted for each of the rows and columns. Once this is done, we need to pick unit tasks from rows and then see if they are functionally dependent on unit tasks in the columns. For example, the unit task “Cancel Ticket” is found to be dependent on “Login”, “Reserve Ticket” since occurrence/ non-occurrence of these two unit task would affect behaviour of ticket cancellation. Based on such individual task-by-task analysis, we may come up with a filled matrix as shown below:
	
	Register
	Login
	Reserve Ticket
	Cancel Ticket
	Get Reservation Status

	Register
	
	
	
	
	

	Login
	Yes
	
	
	
	

	Reserve Ticket
	
	Yes
	
	
	

	Cancel Ticket
	
	Yes
	Yes
	
	

	Get Reservation Status
	
	
	Yes
	Yes
	

The matrix described above is just based on simple and common-sense based requirements for Reservation System and may actually differ based on available application and set of requirements.

2.4. Determining Test Case Flows

Once the functional flow matrix is constructed, the simple task of constructing flows from the matrix may be performed. For the above mentioned example, we can see that “Reservation Status Enquiry” task is based on two other unit tasks, so we may create a flow such as:
Get Reservation Status

Login

Reserve Ticket

Get Reservation Status

Cancel Ticket

Get Reservation Status
Hereby, we know that enquiry task is dependent on other two tasks so we have to test the enquiry task after occurrence and non-occurrence of these two tasks. So, a scenario for enquiring the reservation status would consist of the above mentioned flow. This would allow us to ensure that the reservation enquiry functionality behaves appropriately under different conditions.
3. Pitfalls to the Approach
The functional flow matrix approach enables one to ensure that the quality of flow coverage in the test cases is optimal. It is however important to keep in mind certain pitfalls during the entire identification process:
i. The process of identification of dependencies between different unit tasks inside the functional flow matrix document should be performed rigorously without any assumptions to ensure that none of the dependencies are missed. For example, a website may not prompt for login information for a user already logged in. In such case “Login” unit task can actually be considered as dependent on itself! Coverage of such dependencies may be missed if one simply assumes that “Login” cannot be dependent on itself during dependency identification.
ii. In case of large applications, one should often prefer to divide the entire application into major independent modules and then performing the above mentioned process individually for each of the modules. This may be done since, large applications may have very large number of unit tasks, thus the process of identifying dependencies between such a large number of unit tasks may prove to be laborious and thus error-prone. But, if independent modules, which can be guaranteed to be not having inter-dependent unit-tasks, are identified for separate analysis, such an overhead can easily be avoided to get faster and better flow results.
4. Conclusion

Optimal coverage of functional flows in test cases is very important to ensure that a higher number of defects are detected as part of Formal Test Cycle execution as compared to those found during Ad-hoc Testing.

Functional flow matrix process ensures that no assumptions about dependencies or existence of flows are considered. Instead, it requires a formal data-centric approach to designing of test cases to ensure that a higher level of confidence in the quality of coverage of test cases can be achieved.

