
Code Ownership Revisited
Jurgen Appelo

jurgen@noop.nl
www.noop.nl

January 27, 2008
Introduction
Among well-known methodologies for software development one can
recognize two philosophies regarding the assignment of
responsibilities to team members for the code that they produce:
collective code ownership and individual code ownership. In this article I explain
that there are not two but four ways of assigning responsibilities
among team members. I also claim that the choice for either of these
models should be made not by methodologies but by project
managers, architects or team leaders, and I present a number of criteria
which might be helpful while selecting the best model.
The Tragedy of the Commons
Christmas and New Year’s Eve in 2007 I spent my holidays in
Surinam, a small country in South America, and a former Dutch
colony. For me as a Dutchman this meant that I enjoyed not a typically
Dutch gourmet but a typically Surinamese buffet on Christmas Day,
and great fireworks (pagara's) that would have been illegal in my home
country and almost ripped my eardrums to pieces. The things I
especially noticed in Surinam, in addition to the delicious food and the
fantastic fireworks, were the plastic bottles on the banks of the river,
the broken tiles of the sidewalks and the poorly maintained
government buildings in the inner city. They are examples of the
phenomenon that economist William Forster Lloyd in 1833 called
"The Tragedy of the Commons" (and which was popularized in a 1968
essay by Garrett Hardin): a resource in joint possession of a group of
people is destroyed when each owner individually benefits from short-
term revenue while the long-term costs are spread over all other
owners. Collectively owned properties in a country (including the
environment, infrastructure and government buildings) deteriorate
when people make good use of them while nobody takes responsibility
for their maintenance. This problem, which basically amounts to non-
ownership, can also be seen in software development activities. Any

Code Ownership Revisited

(c) 2008 Jurgen Appelo 2 / 14

developer can name examples of quality problems in code, like
inconsistent interfaces, mixed coding styles and poor documentation.
When developers only deal with new features and immediate results,
while at the same time nobody on the team feels directly responsible
for maintaining the shared code base, the quality of the code will
deteriorate, fully in line with The Tragedy of the Commons.
Four Methods of Artifact Assignment
To prevent non-ownership (and thus loss of quality) in a software
project, it is necessary that we explicitly assign responsibilities to team
members. In literature this is also called code ownership. Since it does not
in the least deal with property rights issues, and not just with code
either, this name seems like a neat continuation of the long tradition of
poor naming in our field. Property rights in a software project mostly
lie with the organization or with the customer and not with the team
members in the project. And besides responsibility for code we must
also assign responsibilities for other artifacts, such as models,
documents, graphics files and test cases. I therefore prefer to speak of
artifact assignment rather than code ownership. And following one other
author (Martin E. Nordberg) I distinguish four policy principles, to
which I have applied my own labels:
Local Artifact Assignment (LAA): Most systems we build today
have interfaces with other systems. We divide major problems in
smaller problems and we cut large systems into subsystems. Local
Artifact Assignment is my label for delegating policy to subsystems
(and subsystems within subsystems). Property laws in Surinam are
different from those in the Netherlands, and within Surinam the rules
applicable to the jungle are different from those in the city. LAA
defines the levels and determines the territories to which we apply
specifically tailored policies. Similarly, we might want to apply a policy
for web pages that differs from the one dealing with database tables.
And the code written for a major financial workflow possibly deserves
a different approach than the code written for public web services. In
short, using LAA we determine a policy per subsystem.
Authoritarian Artifact Assignment (AAA): When distributing work
among software developers, the traditional approach is to have one
authoritarian person (Chief Architect, Team Leader or Lead

Code Ownership Revisited

(c) 2008 Jurgen Appelo 3 / 14

Developer), who is responsible for the quality of his own results and
those of the other team members in the project. We can compare this
with the distinction magazines make between editors and writers.
Several writers provide intermediate results, but responsibility for the
final results lies exclusively with the editor. In Surinam we see such an
implementation when considering landowners who have other people
living and working on their lands, but who need to keep an eye on the
quality of all the work that is performed. With this policy, the team
leader holds the reins firmly in his hands, as if he were a benevolent
dictator.

Figure 1: The Presidential Palace in Surinam, which is in fine
condition

Collective Artifact Assignment (CAA): This approach is relatively
new in our field and it has mainly received publicity thanks to the
Extreme Programming (XP) methodology, under the name Collective Code
Ownership (a term which, unfortunately, is only 33.3% correct).
According to this principle, all team members have equal responsibility
for all the results that they produce within the context of the project.

Code Ownership Revisited

(c) 2008 Jurgen Appelo 4 / 14

The potential of this approach is clear from the magnificent
presidential palace in Surinam (Figure 1) which is collectively owned
by all Surinamese people. But it can also go horribly wrong, given the
deplorable state of most other government buildings in Surinam
(Figure 2).

Figure 2: The Department of Justice and Police in Surinam,
which is in bad condition

Individual Artifact Assignment (IAA): This is the third variant,
promoted in a more specific form in the Feature Driven Development
(FDD) methodology under the name Individual Class Ownership (a term
which is also only 33.3% correct). It is the logical counterpart to the
collective approach. Its philosophy says that for any artifact within the
system only one team member is responsible. In Surinam you can
experience the consequences of this approach when you eat at a warung
(a Javanese eating-house). These warungs are often situated in the
middle of a residential area because home owners can do whatever
they want within the borders of their small territories. The opening of

Code Ownership Revisited

(c) 2008 Jurgen Appelo 5 / 14

such a warung in somebody’s backyard can quickly lead to the opening
of a competing place a couple of houses away. As a tourist you can
fully enjoy the fun, noise and smells in such a street. However, the
neighbors might not appreciate it as much as the tourists do.

These four policy principles are applicable to teams of two or more
persons. However, in many organizations small systems are built
entirely by just one person (Figure 3a). In a team consisting of one
person all policies are equal (i.e. LAA = AAA = CAA = IAA). But
when this one-person team grows by adding an additional team
member a choice needs to be made. There are four options:

1. De second team member can operate as an assistant or
subordinate of the first (= AAA, Figure 3b);

2. The two team members can accept joint responsibility for each
other’s work and for the entire system (= CAA, Figure 3c);

3. The team members can divide responsibilities among each
other, so that they don’t carry any responsibilities for each
other’s work (= IAA, Figure 3d);

4. The team members can split the system in two subsystems (=
LAA, Figure 3e). This results in two one-person teams en for
each subsystem we arrive back at the original situation (i.e. LAA
= AAA = CAA = IAA).

Figure 3a: A one-person team

Code Ownership Revisited

(c) 2008 Jurgen Appelo 6 / 14

Figure 3b: A team with a leader and an assistant (AAA)

Figure 3c: A team with shared responsibilities (CAA)

Figure 3d: A team with divided responsibilities (IAA)

Code Ownership Revisited

(c) 2008 Jurgen Appelo 7 / 14

Figure 3e: Two subsystems each with its own one-person team
(LAA)

Flexibility = Delegation of Policy Making
When software systems change over time their complexity usually
increases. This means that the need to partition those systems into
subsystems also increases. Ultimately, we are always dealing with
programming interfaces and separation of responsibilities. The
concept of information hiding must be implemented somewhere, not
only (by definition) at the borders of a project but also (at our own
initiative) within the project itself. If a system grows so large that too
many developers are involved, we need to split it into subsystems
(LAA). One of the reasons is that AAA, CAA and IAA are not
scalable. Assignment of responsibilities to team members is not
feasible when they are no longer able to oversee the overall system.
But partitioning and information hiding come to our rescue. AAA,
CAA and IAA are the solutions that we use on a local scale, and we
use LAA for partitioning the entire system and our ownership policies.

A project manager, team leader or architect should be able to
determine what policy (AAA, CAA or IAA) should apply to which
subsystem. This choice depends on a number of environmental
variables that can vary over time. Even within a release cycle the
choice may vary per phase and per subsystem, maybe due to changes
in team membership or because of a new agreement between customer
and supplier. The need for flexibility and adaptability in our field is
much bigger than it is for the Surinamese government. Choosing a
rigid approach (for example, the adoption of either the collective

Code Ownership Revisited

(c) 2008 Jurgen Appelo 8 / 14

approach of XP or the individual approach of FDD in all projects in
an organization) does not indicate flexibility, in my opinion, even
though both methods claim to belong to the agile category of
methods. The most flexible approach is the delegation of policy to the
lowest possible level at which people are still able to make informed
choices. After all, at the project level people usually have the most
reliable and up-to-date information on the context of the project. The
choice made by a team leader can therefore be much better founded
than that of an external process manager or the writers of a best-selling
methodology. In this article, I attempt to provide the Surinamese
policy makers among my readers with the right criteria to make their
own informed choices.
Selection Criteria for Policy Making
There is no single answer to the question what the best policy is, but
there are a number of criteria which I will list here.
The Knowledge Criterion concerns the generalists-versus-specialists argument.
Individual responsibility can lead to specialization of team members,
with fragmented but deep knowledge of parts of the system. Collective
responsibility can have the effect that team members become
generalists, with broad and equally divided knowledge of the entire
system. Both alternatives have implications for architecture and
applied techniques. Some authors claim that specialists are valuable in
the construction phase because depth of knowledge is required for
solving complex technical issues. Generalists are said to be valuable
during the subsequent maintenance phase because they must be able
to solve problems with broad but more superficial knowledge of the
entire system. However, another line of thought claims that collective
thinking in the construction phase leads to better solutions to complex
problems, while individual responsibility for specific components
would be useful in the later stable phases of the system. Conceptual
integrity and consistency are always important in any architecture, but
you have the choice to achieve this in either direction (breadth or
depth) in the system. My conclusion is: choose IAA when the
technologies used in individual components are complex; choose CAA
if not the technologies but the problem domain is complex, and select
AAA when the leader is the best person to understand both the
technologies and the problem domain.

Code Ownership Revisited

(c) 2008 Jurgen Appelo 9 / 14

The Resources Criterion concerns the famous truck factor argument. The
truck factor indicates how many team members would have to be run
over by a truck before the project would be in serious danger. (In
Surinam the term "taxi factor" would be more realistic.) Of course, the
idea behind this is that staff turnover and absence (leave or vacations)
come at the expense of a project when knowledge is either lost or
temporarily unavailable. In the case of collective responsibility the
truck factor is high (and thus the risk is low) because each team
member has knowledge of the whole system and you would only have
a problem when the entire team collectively decides to jump in front
of a very large truck (or they decide to go on a vacation to Surinam).
On the other hand, there is some communication overhead involved
when knowledge must continuously be shared among all team
members. The execution of any task with individual responsibility will
cost on average slightly less time than in a situation with collective
responsibility. When resources at any time must be able to take over
each others work there is always a little loss of productivity. This
applies to load balanced servers, cooks in Surinamese restaurants, as
well as team members in software projects. It is in fact the premium
paid every day to mitigate the risk of loss of knowledge. My conclusion
is: choose IAA when daily productivity is of the utmost importance;
choose CAA when the risk of (possibly temporary) loss of knowledge
is unacceptably high; choose AAA when you want to take the middle
road.
The Management Criterion deals with people management questions.
You have to determine which people within a project team are able (or
should be given the chance) of carrying responsibilities. This is a
typical management problem and its outcome depends entirely on the
types of employees in the team. You can choose IAA when a team
member is suffering from the interference by colleagues who always
think they know better. (A common argument against collective code
ownership is that self-proclaimed "experts" are always “improving” the
code of their colleagues.) You can also select IAA when people with
strong personalities have respect for each other's work but also have a
need for self-development and individual creativity, while they dislike
submitting themselves to collective thinking. By contrast, you can
choose CAA when project members have to learn to work together as
a team. (A common argument against individual code ownership is

Code Ownership Revisited

(c) 2008 Jurgen Appelo 10 / 14

that stubborn developers ignore any shared goals and simply go their
own way.) You can also choose CAA when the team consists of
professionals of sufficiently balanced experience levels who love to
learn a lot from each other through cooperation on the same code.
Finally, you can choose AAA when the team is not balanced and there
is clearly one leader, though sometimes an informal one. This person
may find the coaching of junior team members an interesting
challenge.
Without a doubt I can say that there are more examples of people
management that affect the choice of policy for artifact assignment.
Also, some readers may be able to expand my three criteria to cover
additional issues that I have not discovered yet. My suggestion is just
to think about it, not to follow the standard prescription of any
methodology, and to make your own well-founded choices.
Too Much of Anything Is No Good for You
As usual, too much of a good thing may not be good for you.
Adhering to a policy that is too extreme may do more harm than good.
A well known example of individual code ownership is that colleagues
may need to write workarounds when the owner of a crucial piece of
code refuses to cooperate, with the effect that the costs of the
workarounds are higher than what they would have been had the
owner made the proper adjustments himself. Another extreme
example can be experienced when you no longer can improve your
own code because its public interface is being used by a colleague who
does not want to change her call into your code. With pure IAA you
run the risk that developers become lazy and prefer not to make any
changes to their own work. This means that they actually have a
monopoly on their parts of the project.
Supporters of collective code ownership like to use these examples as
arguments in favor of CAA, but they seem to ignore that application
of CAA could lead to other problems. Opponents often present the
argument that collective code ownership may lead to non-ownership.
In such a case everyone owns the code, in theory, but in practice no
one feels directly responsible. With CAA there is a dangerous tendency
to drift towards the well-known problem of The Tragedy of the
Commons. Poor quality of public services in comparison with private

Code Ownership Revisited

(c) 2008 Jurgen Appelo 11 / 14

services is a well-known phenomenon worldwide, not just in Surinam.
The only way to prevent this is to enforce strong discipline among
team members. Extreme Programming does this effectively by
combining collective code ownership with several other best practices
(including refactoring, pair programming, unit testing, stand-up
meetings and continuous integration). In fact, various authors rightly
indicate that collective code ownership only works well in combination
with these best practices. Unfortunately, this means that there is high
coupling between these different concepts: you should better think
twice before deciding to introduce one and not the others in your
organization. But that means subjecting yourself to inflexibilities in
implementing your own process improvement initiatives.
Of course, one can think of variations on the different policies that
can remove some of their sharp edges. For example, we can use AAA
as an intermediate form by appointing a passive authoritarian leader
who only intervenes when IAA or CAA leads to conflicts or quality
problems. (You can compare this with the Surinamese authorities
normally keeping a distance and only becoming actively involved when
food and fireworks come flying through the neighbor’s windows.) One
can also use tools and techniques to prevent potential problems. You
can use versioning in a source control system to separate changes
made by different team members, and you can let it generate
notifications so that every owner knows who changed what and when.
(Unfortunately, for binary formats such as graphics files such a policy
of versioning and notifications will be of less practical use.) A special
option (though not often considered) is to allow competition within a
project. Team members can keep each other alert by allowing the
possibility of building competing artifacts. With this idea, you can
effectively counter any laziness and monopolistic behavior.
Exotic Arguments
Most arguments in this story, in favor of or against certain methods,
are taken from books and on-line articles. They were not the only
arguments that I have been able to find, but they were definitely
among the strongest. Some other arguments I have read were more
exotic than anything I have seen in tropical Surinam. There are writers
who claim that team members will be more proud of their work when
applying some specific policy. Other writers argue that the application

Code Ownership Revisited

(c) 2008 Jurgen Appelo 12 / 14

of one method motivates the team much more than the application of
another method. I have even seen the risk of someone suffering a
burnout being used as an argument for one approach over another.
Personally, I found these arguments weak or downright silly and
therefore I chose to omit them from the criteria mentioned earlier,
which has hopefully benefited the readability of my story. Pride,
motivation and burnout, I believe, depend primarily on other
circumstances in the organization and can be both fed and
undermined with either of the policies in this article. However, if you
are of another opinion then feel free to add additional criteria to the
checklist I presented in this text.
One argument that regularly surfaces and which is inaccurate,
according to my view, is that the collective approach is preferable
because selfishness (in the individual approach) leads to anarchy.
Several authors explain that team members should be serviceable
towards the team, and public interest must be placed over private
interest. I can say that many philosophers, economists, sociologists and
biologists are of a different opinion on this matter. From Adam Smith
to Ayn Rand and from Milton Friedman to Richard Dawkins, famous
thinkers agree that self-interest and cooperation are respectively the
purpose and the means that will trigger the emergence of fantastic
systems. The challenge is to manage artifact assignment in such a way
that self-interest and cooperation lead to optimal results for the owner
of the project.
Conclusion
In this article I argued that there are not two but four ways of
distributing responsibility for code and other artifacts among team
members in a project. Three variants (authoritarian, collective and
individual) correspond nicely to the three ways in which the granting
of actual properties can take place in the real world. The fourth way
(delegating policy making to the local level) is similar to the drawing of
national and regional boundaries. I hope to have convinced readers
that the selection of policies can best be done at the lowest possible
level so that one can take into account the local circumstances. To
those who would like to study the different variants some more, I
would recommend to spend a vacation in Surinam so that one can see

Code Ownership Revisited

(c) 2008 Jurgen Appelo 13 / 14

and experience the differences in practice, while enjoying good food
and fantastic fireworks.

Code Ownership Revisited

(c) 2008 Jurgen Appelo 14 / 14

Sources and References
Coplien, J.O. and Harrison, N.B. (2005) Organizational Patterns of Agile Software

Development. Upper Saddle River: Pearson Prentice Hall (p. 261-263)
Nordberg, M.E. (2003) “Managing Code Ownership”. IEEE Software,

March/April 2003 (p. 26-33)
Palmer, S.R. and Felsing, J.M. (2002) A Practical Guide to Feature-Driven Development.

Prentice-Hall (p. 42-45)

On-line resources
Tragedy of the commons
http://en.wikipedia.org/wiki/Tragedy_of_the_commons
Collective code ownership is limiting software quality
http://weblogs.asp.net/ralfw/archive/2006/04/01/441639.aspx
Collective Code Ownership
http://www.extremeprogramming.org/rules/collective.html
Collective Code Ownership
http://www.xpexchange.net/english/intro/collectiveCodeOwnership.html
Collective Code Ownership and Text: A Conversation with Ward Cunningham,

Part II
http://www.artima.com/intv/ownershipP.html
Design Principles and Code Ownership: A Conversation with Martin Fowler, Part

II
http://www.artima.com/intv/principles4.html
Situational Code Ownership: Dynamically Balancing Individual -vs- Collective

Ownership
http://www.cmcrossroads.com/index2.php?option=com_content&task=view&id

=675

