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Abstract 

 A novel Object-Oriented class testing approach, proposed in this paper, combines functional 
with structural testing techniques.  Based on state-based testing, test cases generated from the 
MACT (Method for Automatic Class Testing) tool can be used to execute functional testing.  The 
definition-use information of data members, occur in public member functions of a class under 
test, is generated from MACT to facilitate data flow analysis.  Testers can compute definition-use 
path with the information in order to ensure that the class is also satisfied with data flow coverage 
at intra-class level.  The discussion with a queue class example to reveal that using a hybrid 
testing technique benefits class testing. 

1 Introduction 

 Most computer applications can be tested in one of two ways: (1) functional (black-box) 
testing, and (2) structural (white-box) testing.  The supporters of structural testing argue that 
functional techniques may not provide sufficient coverage of the code.  Their opponents contend 
that structural approaches do not consider the requirements of specifications at all, since test cases 
are entirely generated from the implementation [1] [2] [3]. 
 The new class testing approach for Object-Oriented classes, discussed in this paper, is 
adopted by MACT [4] [5] [6] [7].  In which the test case tree, created from the state machine of a 
class under test, is used to produce test messages for functional testing as well as the intra-class 
definition-use information for structural testing.  In functional testing, each class is tested as a 
unit based on state-based testing techniques, to verify the behaviour of an object, such as state 
changes.  Data flow techniques are used to perform this structural testing that enables us to detect 
whether every data variable (data member, or parameter in public methods) has been defined 
prior to being used, and whether all defined data variables have been used in the class. 
 The functional testing approach in MACT needs a (an implementation) state machine as a 
specification.  Following the state machine, the test case tree generator builds a threaded mutli-
way tree.  After tracing the tree (also called test case tree), all possible test cases are generated.  
The tree completely duplicates the behaviour of the state machine of the class under test and it 
comprises all possible expected states of all transitions of the class [3] [7] [8].  Therefore the tree 
is also used as a test oracle, with which the test results are inspected by the test result inspector of 
MACT.  Eventually, the pass/error messages generated by the MACT tool show whether the class 
under test is satisfied with the state-based coverage. 
 In the MACT tool, the various associations of data members with definitions and uses across 
the public methods in the class are taken into account, in order to compute intra-class definition-
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use pairs.  The definition-use information across public functions is examined whether or not any 
data anomalies exist in the sequence public methods called by clients.  Inter-method definition-
use pairs can also be computed by MACT, if the interaction of private and public functions can be 
described as a sub-state machine and embedded in the super state machine that the public 
methods are depicted in.  However this is excluded from this paper.  In data flow coverage, other 
pairs of definition-use (e.g. parameters, alias and local variables) also need to be concerned in the 
class under test.  At the intra-class level, however, only the occurrences of data members within 
all possible sequences of function calls, which can be executed by the class under test, are 
considered. 
 The framework of MACT is illustrated in section three.  A queue class example and the 
technique of test case generation are introduced in section four and five respectively.  The 
concept of data flow testing and the approach of MACT, which is used as a structural test tool, 
are described in section six and seven.  In which the queue example is also used to show how the 
definition and usage of data members are generated by MACT.  The rest functions of MACT are 
briefly discussed in section eight.  Following that is our future work and conclusions. 

2. Background 

 The main point of state-based testing [9] [10] [11] is to examine the values, which have been 
stored in the object at a particular time.  Those particular values represent the state of the object.  
State-based testing also validates the interactions that occur between the transitions and the state 
of an object.  The changing states rely on the values that are changed by the transition.  After 
executing a transition, it validates the final state that has been achieved by the object.   
 A state machine defines the set of states and transitions, and depicts the dynamic behaviour 
and the state changes of an object.  Therefore the state machine can be used as an aid in state-
based testing [12].  Programmers refer to the state machine of a class as a specification to code an 
implemented class, and the expected results are the requirements that should be followed.  
Therefore the states of the implementation object should be the same as the states that are shown 
in the state machine.  Nevertheless, a transition name in the state machine could be different from 
its member function name in the implemented class.  If any differences exist, then it is necessary 
to use an implementation state machine to reveal the behaviour and state changes of the 
implemented class. 
 Data flow testing techniques [13] [14] [15] are based on data flow analysis, and require that 
the test data (cases) exercise paths from definitions to uses.  These techniques are also code-based 
testing techniques, and they can be used in code optimisation, anomaly detection, and test data 
(cases) generation [2] [15].  Extending the techniques to test object-oriented classes, the test cases 
can be classified into intra-method, inter-method and intra-class three categories [2] [16].  Intra-
class testing examines the definition-use paths of the class's variables which across public 
methods when they are called in various sequences. 
 Object-oriented classes are usually designed as an independent small (sub) system.  They 
respond to service requested from outside.  If a whole class is tested as a unit, then it can be 
similarly performed as an application system test.  Systems can be tested using unit (intra-
method), integration (inter-method), and system (intra-class) testing techniques.  The state-based 
testing technique covers the entire object rather than just individual methods and so is much more 
appropriate for testing objects.  The test cases generated with state-based testing methods will be 
used to execute intra-class testing. 
 A test case can create a starting state, the expected action causing transition to the next state, 
and the expected next state [17].  The test cases considered in this paper are defined for class 
testing by sending messages to objects and estimating the results.  The test message generator in 
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MACT only produces the expected messages using state machines.  Those messages are directly 
sent to the object class under test. 

3 The Framework of MACT 

Based on the new object-oriented class testing approach, an automatic object-oriented class 
test tool, called MACT, is built.  Which consists of five components: Test Case Tree Generator, 
Test Message Generator, Test Driver Generator, Test Result Inspector and Def-Use Info 
Generator.  The first four are used to achieve state-based testing, and the last is a mechanism for 
data flow testing.  The framework of MACT is shown in Figure 1. 
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Figure 1 The components of the automated class testing framework (MACT)

Generate
Def-Use

Information

Test Case Tree

Computing
Def-Use

Paths

Data Flow
Coverage Report

Def-Use Info

Data Anomaly

 
 Designing test cases for a unit test, testers usually require the specification and source code 
of the unit [18].  Programmers follow the specification (e.g. state machine) to implement the 
program code of the class.  Testers also need to review the specification and implementation of 
the class to design test cases, in order to test the implemented class with the test messages 
directly.  Therefore, the implementation state machine (e.g. in Figure 4) may be required in 
MACT.  The test case tree generator can generate various test case trees according to the various 
implementation state machines.  Traversing the test case tree, test messages for the class under 
test are automatically produced by the test message generator of MACT.  The test driver 
generator in MACT receives test messages and generates a C++ main() format function as a test 
driver in a C++ program code.  The class under test is included as a user-defined class and test 
messages are listed in the main() function.  An example of the test driver is illustrated in Figure 
12.  In a driver, a test result file is declared as an output file, in order to record the test result 
(state) values while the program is executing.  The tree also contains test oracles, which are based 
on state-based testing, consists of function names and state information.  Hence the test results are 
inspected by the test result inspector, which parses the test result records (containing messages 
and resultant states of the messages) one by one using the test oracle tree.  The def-use info 
generator also traverses the same tree, which contains the occurrences of data members in each 
member function, to produce definition-use information.  This intra-class level information 
facilitates computing definition-use paths and detecting data anomaly.   
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4 Example: A Queue Class 

 Assume a circular bounded queue class that can only store five units of data.  An object of 
the queue has six state spaces, which are the empty state, contains 1 unit, contains 2 units, ... , to 
the full state.  The state of the queue object is defined by the value of the count data member.  We 
can classify the states into Empty, NotFull, and Full sub-states.  The Que object is at the start 
(Empty) state when it is defined and the constructor function sets its count to 0.  Moreover the 
state of Que will change to NotFull, when a piece of data is added into it, and addone transition is 
executed.  The behaviour of Que is depicted with the state machine in Figure 2.  In which the 
transition checksize does not cause any state change.  When Que is at the NotFull, add and 
del_data methods (transitions) may not cause any state change until count = 5 or count = 0.  

deleteone

Figure 2 The Design State Machine of the queue

NotFull
addone

Empty
deleteone

addone

deleteone
addone

checksize
checksize

checksize

Full

 
 Suppose the queue class has f, r, count and Q[SIZE] four data members.  The Q can only 
contain five units of data, and queue has a constructor, a destructor and four public member 
functions.  The C++ code template of queue is given in Figure 3. 

const int Size = 5;
class queue{
protected: char Q[Size]; // bounded array

int f, r; // Front/Rear index of queue
int count; // a counter of the array

public: queue(void); // default constructor
void is_empty(void);
int add(char); // add data to the queue
char del_data();//delete data from the queue
void sizes(void);// get the size of the queue
~queue(void); // destructor

};
queue::queue(void){

r = -1; f = 0;
count = 0;
for (int i = 0; i < Size; i++){
   Q[i] = ' ';}

}
int queue::add(char data){

if (count == Size){
   cout << "Not room for adding new data to stack\n";
   return (0);}
r++;
if(r==Size){
   r=0;}
Q[r] = data;
count++;
return (1); }

char queue::del_data(){
char data;
if (count == 0){
   cout << "can't delete data from an empty stack\n";
   return('0');}
data = Q[f];
f++;
if(f==Size){
   f=0;}
count--;
return (data);

}
void queue::is_empty(){

if (count == 0)
   cout<<"The queue is empty\n";
else
   cout<<"The queue is non-empty\n";

}
void queue::sizes(){

cout << "the size of the queue :" << count << "\n";
return;

}
queue::~queue(){

cout << "\nfinishing the class test\n";
}

Figure 3 The implemented C++ code of the queue class  
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4.1 Implementation State Machine of the queue Class 

 The chechsize transition in Figure 2 is performed by the is_empty() or size() functions in the 
implemented class, see Figure 3.  Moreover, the detailed information of transitions and member 
functions, in which data members are accessed, are required to facilitate data flow analysis.  
Hence an implementation state machine of the queue is illustrated in Figure 4 to display the 
information of implemented class code and the behaviour of the object class.  
 The design state machine (Figure 2) is encapsulated as a class.  The attached member 
functions show the possible messages, which can be sent to the objects by invoking these member 
functions declared inside the class.  The table following the oval diagram describes the mapping 
between transitions and member functions.  Function names with the | symbol in the table means 
OR.  

The implementation state machine of the class queue is defined with finite sets ISM = (V, F, S, T) where
V = {char Q, int f, r, count}
F = {queue(), is_empty(void), add(char), dele_data(void), sizes(void), ~queue()}
S = {(Empty, count=0), (NotFull, 0<count<5), (Full, count =5)}
T = { S0, queue(), Empty, (count=0); {[count, r, f, Q]}

Empty, is_empty(), Empty, (count=0), {<count>}
Empty, sizes(), Empty, (count=0), {[count]}
Empty, add(data), NotFull, (0<count<5), {<count, r>, [r++, r=0, Q[r]=data, count++]}
NotFull, is_empty(), NotFull, (0<count<5), {<count>}
NotFull, sizes(),NotFull, (0<count<5), {[count]}
NotFull, add(data), NotFull, (0<count<5), {<count, r>, [r++, r=0, Q[r]=data, count++]}
NotFull, add(data), Full, (count=5), {<count, r> [r++, r=0, Q[r]=data, count++]}
NotFull, del_data(),NotFull, (0<count<5), {<count, f>, [data=Q[f], f++, f=0, count--]}
NotFull, del_data(), Empty, (count=0), {<count, f>, [data=Q[f], f++, f=0, count--]}
Full, is_empty(), Full, (count=5), {<count>}
Full, sizes(), Full, (count=5), {[count]}
Full, del_data(),NotFull, (0<count<5), {<count>, [data=Q[f], f++, count--]}
Empty|NotFull|Full, ~queue(), St, (Ø), {Ø}

       }

Transition Names Function Names
checksize is_empty() | size()

Figure 4 An Implementation State machine of the queue Class
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 In the implementation state machine, V is a set of data members declared in queue and the 
parameters of the member functions; F implies a set of member functions declared in queue.  S is 
a set of all states which an object of queue has, and T is a set of all transitions between states, and 
each element of T is a quintuplet = {current, function, result, predication, data access}.  Where 
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current, result ∈ S, are states having a transition outgoes and incomes respectively.  Function ∈ 
F, which triggers the transition from current to result.  The predication causes state change and it 
is the post/pre-condition of the current/next transition.  A set of <predication use> and/or 
[definition or computation use], bracketed within {} in Figure 4, indicates the data access of the 
data members in the functions.  For instance, the <count, r> exposes the count and r are used at 
condition statements (predication use), and, [r++, r=0, Q[r]=data, count++] indicates that the r, 
Q and count are defined in the add() function, as well as the values of r and count are referenced∗. 
 The state change of an object is determined by the execution of the next member function at 
the current state.  The current state value is the pre-condition/post-condition of the next member 
function/previous member function will be/has been executed.  For example the Que object is at 
Empty state when count = 0 is true.  This is unsatisfied with the pre-condition of del_data() 
member function, so that the del_data() function cannot be triggered when the object is at the 
Empty state.  The transition "Empty, add(data), NotFull, (0<count<5)" described in Figure 4 is 
Empty and NotFull as a current state and a result state respectively.  This transition occurs when 
an object is at the Empty, pre-condition (count=0) is true, and the member function add() is 
called.  When the add() function is executed and count++ is performed, then the state changes to 
NotFull.  Hence, the pre-condition of this transition is count=0 and its post-condition is 
0<count<5.  

4.2. The test case tree of the queue class 
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Figure 5 A Tree Contains the Test Messages, Test Oracles, and Data Member Def-Use Information of the queue Class.
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 Following the implementation state machine in Figure 4 and based on state-based testing, the 
test case tree generator (see Appendix A) of MACT produced the threaded multi-way tree in 

                                                        
∗ In C or C++, int x; is a definition statement and x=10; is an assignment statement.  However, in data 
flow testing, the definition of a variable x, when it is at the left side of an assignment (e.g., x=10).  The 
value of x is referenced, when it is at the right side of an assignment (e.g. y=x+10;) 
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Figure 5.  The tree completely duplicates the graph of the state machine.  The pointers and the 
threads in the tree can simulate any cyclic links in the state machine.  Each (circular) path is a 
sequence of test cases.  The core of MACT is the threaded multi-way tree, which simulates the 
behaviour of a state machine.  Even more complicated state machines (featuring hierarchies, 
concurrency, and nested states) can also be represented by this approach [7].  The structure of 
each tree node is shown at right up corner in Figure 5. 

5 Possible test cases of queue generated from MACT 

 After tracing the tree in Figure 5 with Que, the test cases of Que are produced by loops in the 
tree from the root node and shown in Figure 6.  The condition in bold square brackets followed 
by messages is a pre-condition.  The state value (post-condition) within bold square brackets 
following the messages means the expected resultant state, after the messages being executed.  
For the sake of simplicity, repeatedly executing a member function is represented with 
“Oue.f(),...,Oue.f()” form, and messages in a pair of arrow brackets represent the state is still at 
same after executing the messages.  The test message generator (its algorithm shows in [5]) 
traverses the tree from the root node down to the leaves.  A generated message file, consists of a 
sequences of function calls, for Que is produced, see Figure 7. 
  [count=0], Que.is_empty(), [count=0].
  [count=0], Que.sizes(), [count=0].
  [count=0], Que.add(), [0<count<5], <Que.add(),...,Que.add()>,

[0<count<5], Que.sizes(), [0<count<5].
  [count=0], <Que.add(),...,Que.add()>, [0<count<5], Que.del_data(),

[0<count<5].
  [count=0], Que.add(), [0<count<5], Que.del_data(), [count=0].
  [count=0], <Que.add(),...,Que.add>, [0<count<5], Que.add(), [count=5],

Que.sizes, [count=5].
  :
  [0<count<5], Que.add(), [0<count<5], Que.add(),[count=5],

Que.is_empty(), [count=5].
  [0<count<5], Que.add(), [0<count<5], <Que.del_data(),…,Que.del_data()>,

[0<count<5].
  [0<count<5], <Que.add(),...,Que.add()>, [0<count<5], Que.add(),

[count=5].
  [count=5], Que.del_data(), [0<count<5].

:

Figure 6 Test cases of the Que object

:
Que.add();
Que.sizes();
Que.add();
Que.del_data();
Que.add();

:
Que.del_data();
Que.add();
Que.sizes();
Que.add();

:
Que.sizes();
Que.is_empty();

:

Figure 7 A test message
file for the Que object

 

6 Test cases of queue generated based on data-flow criteria 

 A class is a basic unit of testing in an object-oriented program, and most of this test work has 
centred on black-box approaches.  Harrold [2] developed a class control flow graph to connect all 
methods in the class, and adapted Pande's [19] data flow analysis algorithm to compute the data 
flow information required for data flow testing.  Hong [20] demonstrated the Class State Machine 
(CSM), extended from Finite State Machine, to specify the behaviour of classes.  The CSM was 
then transformed into a Class Flow Graph to show data flows of the state machine.  Eventually, 
selected intra-class test cases using data flow testing techniques. 
 Harrold [2] and Hong [20] describe that intra-class def-use information can guide testers in 
the selection of sequences of methods (function calls).  In the following, the queue class is used 
as example to discuss the difficulty of generating intra-class test cases for the Que based on data 
flow testing techniques.  Moreover, the selection of sequences of function calls, which satisfy 
certain data flow coverage criteria, may also contain some unnecessary (ambiguous) method 
sequences.  Testers need to filter them by referencing the functionality of the class. 
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6.1 Overview of Data Flow Testing Criteria 

 Data flow testing techniques need directed flow graphs to facilitate the computation of def-
use pair information, the selection of test cases, and the detection of anomalies within the 
program under test.  The indication of anomalies may include: (1) defining a variable twice with 
no intervening use, (2) referencing a variable that is undefined, and (3) not referencing the 
variables that are defined [1] [21]. 
 Based on data flow testing, each instance of a variable in a program is classified as a 
definition or a use.  A definition of a variable is that a variable is assigned a value.  A use of a 
variable is that the value of the variable is used (referenced).  Uses of a variable are further 
divided into two classes as either computation uses (c-use) or predicate uses (p-use) [22].  A c-
use occurs when the value of a variable is used in a computation or output statement, and a p-use 
occurs when the value is used in a condition (predicate) statement.  For instance, the if (x > 0) {x 
= y + 10;} statement contains p-use of x and c-use of y, followed by a def of x. 
 The du path of each data member is from its definition to every use that is reached by the 
definition.  Let i be any member function and v any variable such that v ∈ def(i).  Hence, dcu(v,i) 
is the set of all functions j such that v ∈ c-use(j), and in this path there is a def-clear sub-path with 
respect to v from i to j.  The dpu(v,i) indicates the set of all functions j such that v ∈ p-use(j) and 
in this path there is a def-clear sub-path with respect to v from i to j. 
 Data members in a class are also global variables.  In data flow testing at intra-class lever, a 
global use (c-use or p-use) of a data member x if and only if the definition of the x preceding its 
use does not occurs within the same member function.  Otherwise, it is a local use.  A global 
definition of a data member x, if and only if the last definition of the x occurs in a member 
function i, and there is a def-clear path with respect to the x from the i to another member 
function j.  In the function j, there is a global use of the x [23]. 
 The criteria of testing-path-selection are based on data flow, and focus on variables to be 
defined and used.  When executing a test case, the test case is said to exercise a def-use (sub) path 
if the (sub) path is traversed.  Therefore, tracing the flow of data members among member 
functions in the class rather local variables within an individual function is concerned in this 
paper.  Some data flow testing concepts criteria can be referenced in [2] [14] [15] [22]. 

6.2 Def-use information in the queue example 

 Selecting intra-class test cases, the interest is only the data members in the public member 
functions of queue.  In this example, moreover, each element in the data member Q array will be 
dealt with individually. 
 For simplicity of def-use presentation in each member function of queue, each code 
statement is a unit, in which the definition and/or use of data members occur.  For example, in the 
data flow graph of add() function (see Figure 8), the p-use(count) and c-use(r) at the node 1 and 
2 cause concerned as to whether or not the count and r, used in this function, have been properly 
defined in the preceding functions.  Moreover, we also need to examine if the defined count and 
Q, def(count) and def(Q), will be able to be used in the succeeding functions. 
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4
def(r)

int que::add(char data){
1. if (count == Size){

   cout << "Not room for new \n";
   return (0);
}

2. r++;
3. if(r==Size){
4    r=0;}
5. Q[r] = data;
6. count++;
7. return (1);
}

t

1
p-use(count)

2
c-use(r)
def(r)

3
p-use(r)

5
c-use(r), def(Q)

6
c-use(count)
def(count)

s

Figure 8 The C++ code add() member function on the left and its directed flow graph on
the right.  Nodes in the graph represent statements in the function; start and
terminate nodes are added for analysis.

 
 As in Figure 8 the bold def and use of data members should be computed, and also the non-
bold data members.  The dpu(r, 2)={3}, and dcu(r, 4)={5} have formed sub paths within the 
add(), and the definition of the r at statements 2 or 4 could be either used in the succeeding 
functions.  Figure 9 illustrates the intra-class definition-use information of data members in 
queue. 

functions (queue(), is_empty(), add(), del_data(), sizes()).

global_defs (queue(), [count, f, Q, r]). global_defs (del_data(), [f, count]).
global_cuses (queue(), []). global_cuses (del_data(), [Q, f, count]).
global_puses (queue(), []). global_puses (del_data(), [count]).

global_defs (is_empty(), []). global_defs (sizes(), []).
global_cuses (is_empty(), []). global_cuses (sizes(), [count]).
global_puses (is_empty(), [count]). global_puses (sizes(), []).

global_defs (add(), [r, Q, count]).
global_cuses (add(), [r, count]).
global_puses (add(), [count]).

Figure 9 Global definition-use information of data members within queue  
 The definitions and uses of the data members among the functions of queue are shown in 
Table 1.  The test cases can be generated to cover associations between definitions and uses of 
each data member from the table, based on du-path criteria.  The arcs in Table 1 show that some 
pairs of sequence methods are used for intra-class testing.  For example, du-paths with respect to 
the count are in queue()→add(), add()→add(), add()→del_data(), and del_data()→is_empty().  
There are d-cu paths of the r in queue()→add(), and add()→add().  A d-cu path of Q and f exists 
in add()→del_data() and del_data()→del_data() respectively,   Furthermore, a sequence of 
messages queue()→add()→add()→del_data()→del_data() which has all defs coverage, can be 
established.  It is time-consuming work to compute this sequence. 



 10 

Function
Names definition computation-use predication-use

queue() {count, f, r, Q}

add() {r, Q, count} {r, count} {count}

is_empty() {count}

sizes() {count}

del_data() {f, count} {f, Q, count} {count}

Table 1 The def, c-use and p-use information associated with functions

 
6.3 Generating Data Flow Test Cases 

 It is difficult to discover all possible test cases to achieve all defs, all uses, or all du-paths.  
For example, a class has N data members (denoted V1, V2, …, Vn) and M public member 
functions, in each of which every data member is defined (denoted Md), computation used 
(denoted Mcu), and predicate used (denoted Mpu).  Then the maximum du-paths across only two 
member functions with respect to every data member are V1×(Md

 ×(Mcu+Mpu)) + V2×(Md
 

×(Mcu+Mpu)) + … +Vn×(Md
 ×(Mcu+Mpu)) ⇒ N×(Md×(Mcu+Mpu)) ⇒ 2N×M2.  In this queue 

example, there are 3×(3+3)+2×(1+1)+2×(1+1)+2×(1+0)=28 du-paths within two member 
functions in the sets with respect to data member, count, r, f and Q individually.  Additionally, a 
pair of ordered functions may not only contain a data member.  Such that count and r two data 
members occur in the queue()→add() test path.  Selecting a test case, the du pairs of all possible 
data members in each test case ought to be considered.  

6.4 The Complexity of Data Flow Criteria for Test Case Selection 

 Weyuker [24] [25] proposed that all du-paths require an exponential number of test cases in 
the worst case.  If d is the number of (two way) decisions in the program, then the all uses data 
flow criterion requires O(d2) test cases, and all du-paths requires O(2d) in the worst case.  For 
example, suppose a program (procedure) comprises a sequence of d IF-THEN-ELSE statements, 
and each of them defines and uses a variable x.  All-du-paths may, then, require 2d test paths.  
However, this is simply the worst case and in practice both criteria would require only at most d 
+ 1 test cases [24].  That means many test cases of the worst case are not necessary. 
 In a class, each method has to be tested individually.  Each class will then have N associated 
test cases when there are N methods in the class.  Nevertheless, to check the validity of calling 
sequences within the class, such as intra class coupling, N methods implies the order N! test cases 
[26].  In those cases there could be some redundant sub sequences.  For instance, the first element 
of the Q is defined in the first add() function (called Fadd1), and the element is referenced in the 
first del_data() function (called Fdel1).  There can be several member functions with different 
performance orders in the interval of Fadd1 and Fdel1.  Such as add()→del_data(); 
add()→is_empty()→del_data(); add()→ … →del_data(); and each of the test cases has a du-path 
with respect to Q[0]. 
 The result, found by Bieman in [27], shows that 80% of the procedures need to be tested by 
ten or fewer complete paths to satisfy all du-paths criteria.  However, it is a tedious task to find 
the redundant test cases. 
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6.5 Inadequate and Ambiguous Test Cases 

Test cases can be produced following the du-paths.  Some of the paths could be inadequate.  
For example in the queue, a queue()→del_data()→add() can achieve the du-paths with respect to 
count, f, r, and Q.  However, it is unreasonable to perform the del_data() member function 
following the constructor, queue().  In addition, there is a du-path of the count and r data 
members in queue()→add(), but a double definition anomaly occurs on Q.  If we avoid the 
ambiguous test cases, then some of data members may not be tested, such as the queue()→add() 
which is needed to test count and r. 

6.6 Feasible and Infeasible Test Paths 

 An infeasible path is that no input data exists which can cause such a path to be executed.  
However, a path is feasible if there are some input data, which will cause the path to be traversed 
during execution.  The sequence methods calls from outside of the class under test can be 
specification infeasible or implementation infeasible.  Infeasible sequence methods (subpaths) 
should not (or cannot) be executed according to the specification.  For example, 
queue()→del_data() sequence should not be required in the specification, and an infeasible 
implementation is such as queue()→add()→del_data()→del_data() sequence.  Because queue 
cannot accept the second delete data message from the client object when its state value is zero 
(i.e. count == 0). 
 Harrold [2] and Hong [20] demonstrated their techniques are also useful for determining 
which sequences of methods should be executed to test a class, and pointed out error sequences 
with examples that need not be run.  However, they did not discuss the technique to select 
infeasible sequences from N!.  In fact, Weyuker [25] found that the non-executable (infeasible) 
path problem was the primary practical difficulty in using the all du-paths criterion, because there 
are many infeasible paths to contend with the criterion.  In automatically generating sequences of 
calling methods to satisfy data flow criteria, the problem of generating infeasible sequences is 
impossible to avoid [28]. 
 To gain all possible useful test cases, we need to remove redundant paths and to eliminate 
the infeasible (such as inadequate, ambiguous, or non-executive) test cases from the generated 
intra-class level test cases based on data flow testing criteria.  However, in practice, it is not an 
easy task to detect them from N! test cases. 

7 Data Flow Testing Approach in MACT 

 At the different point of view, if we already have test cases for all possible feasible paths of 
the class.  We, then, use data flow analysis technique to detect whether or not these feasible 
sequences violate data flow criteria.  On this assumption, intra-class test cases are generated by 
MACT based on state-based testing technique, and then the sequence paths within these test cases 
are analysed with data flow criteria to conclude whether these test cases are satisfied with data 
flow coverage. 
 The data flow testing approach of MACT is to firstly generate a test case tree of the class, 
which is derived from the design (or implementation) state machine.  This is the same as the 
discussion in section 4.2.  Secondly, by tracing the tree, intra-class definition-use information of 
data members can be produced for data flow testing.  Finally, the def-use information of the data 
members is analysed to detect whether or not the class under test is satisfied with data flow 
coverage. 

7.1 Generating Def-Use Information from MACT 

 Reviewing the implementation state machine, we then fill the occurrences of data members 
into the def-use field of the respective node in the test case tree, while the test case tree generator 
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is executing.  After the test case tress of the queue contains def-use information is produced, see 
Figure 5.  Each node of the tree has the function name, current state value (name), and def-use 
information of data members.  Based on the tree, we are  

(1) to identify definitions and uses of each data member in the transition of the 
implementation state machine;  

(2) to review these definitions, uses, and the sequences of test messages (generated by the 
MACT) to compute the sequences of definition-use pairs; and 

(3) to analyse the information of these definition-use pairs to show what kinds of the data 
flow criteria those test messages can achieve and if any anomaly occurs. 

 The test case paths (see Figure 10), generated by tracing the tree, are used to detect whether 
they cover def-use paths.  For example, the "constructor, Empty, sizes(), Empty" test case has a 
sequence of member functions, queue()→sizes(), and we can analyse the def-use information to 
find if the def-use path with respect to data members occur in this test case, and thus detect if data 
anomalies exist. 

7.2 Computing DU Paths 

 The def-use information of data members in each member functions of the several test cases, 
generated by the MACT, is given in Figure 10. 

d(r,f,count,Q), cu(count). // constructor, empty, sizes(), empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count).
// constructor, empty, add(), notfull, del_data(),empty.

d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count),…,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), pu(count).

// constructor, empty, add(), notfull, add(), notfull, ...,add(), notfull, del_data(), notfull,
is_empty(), notfull.

:
d(r,f,count,Q), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), …,
pu(count), cu-d(r), pu-d(r), cu(r), d(Q), cu-d(count), pu(count),cu(f,Q), cu-d(f), pu-d(f), cu-d(count), cu(count).

// constructor, empty, add(), notfull, add(), notfull, ..., add(),full, del_data(), notfull,
sizes(), notfull.

: Note: d(x): x is defined
: cu(x): x used for computation

pu(x): x used in predicate
cu-d(x): cu(x) and then d(x)
pu-d(x): pu(x) and then d(x)

Figure 10 Data members definition-use pairs in the queue Class
 

 The definition-use of the data members in the "queue(), Empty, add(), NotFull, del_data(), 
Empty" is shown as an expression in Figure 10.  For the sake of explanation, the expression has 
been divided into four rows with different data members and they are shown in Table 2.  In the 
first row, for example, the du paths can be computed with respect to the data member r.  The r is 
defined in the queue() and add() functions, and then is used in the add() function.  This shows no 
anomaly occurred on the r in this test case. 
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Functions
Data Members queue() add() del_data()

r def(r) cu-d(r),   pu-d(r),   cu(r)

f def(f) cu(f),   cu-d(f),   pu-d(f)

count def(count) pu(count),   cu-d(count) pu(count),   cu-d(count)

Q def(Q1,…,Q5) d(Q1) cu(Q1)

Table 2 The du paths with respect to each data member in queue

Note: The arcs emerging from table show the defined data member could be used in
succeeding functions  

7.3 Code Optimisation 

 There are several du paths with respect to f and count in the second and third rows, and the 
last definition of count and f in this case is not against the du path criteria.  Because the count and 
f are global definitions in the del_data(), they may be used in the succeeding messages, such as 
is_empty(), sizes(), or del_data().  However, if the all test cases generated from the test case tree 
(see Figure 10) are carefully reviewed, we can find out the last defined f will never be used.  The 
sequence member functions following the del_data(), in which a definition of the f occurs, do not 
reference the defined f, except another following del_data().  The following del_data() references 
the f defined in the previous del_data(), will define the f again.  This shows that the last defined f 
within the last del_dat() function in every sequence test case does not be used.  That del_dat() has 
a "not referencing the variable that are defined" anomaly. 
 The f data member is used as an index when the front element in the Q[SIZE] array is 
removed.  The last defined f can only be used in the sizes(), is_empty() or ~queue() functions.  In 
the Que, the count is used to reply to the messages of the sizes() and is_empty() methods.  
However, the count can be replaced with f and r.  By calculating f and r, the result can indicate 
whether the Que is at the empty, not-full or full state, even show how many units of data exist in 
the Que.  This is a code optimisation problem and will not be discussed further in this paper. 

7.4 Anomaly Detection 

 An anomaly of data member Q occurs in the queue()→add() test case is found in the last row 
of Table 2.  In fact, programmers are used to initialise variables as they are defined in the 
constructors of a class.  In this case, it is necessary to initialise the count, r and f, but it is not 
necessary to empty the Q in the queue().  The test cases generated based on state-based testing 
could not detect this kind of anomaly.   
 Moreover, theses anomaly problem, the Q has double definition and the last defined f may 
not be referenced, can never be detected in the intra/inter method testing.  Because intra-method 
testing is performed to test each function in the class individually and inter-method testing is 
executed to test a function together with other functions (in the same class) that are called directly 
or indirectly.  

8 Other Functions of MACT 

8.1 Test Driver Generator of MACT 

 The test message generator writes the function names into a test message file, which is part 
of the test driver.  The test driver generator in MACT reviews the message file, and then 
generates a C++ main() function as a test driver.  The driver will include the class under test, and 
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then test the class with the messages.  After executing the test driver, the test results can be 
recorded into a test result file. 
 The class, queue, under test is included in the program as a user-defined class (e.g. #include 
"queue.h") [29], and it is inherited by a subclass called Queue.  Moreover, an additional member 
function, called amt(), is declared in the subclass in order to access the state values (the type is 
private) stored in data member count, which is also inherited from the queue class.  Obviously, 
the amt () can be declared as a friend function.  Therefore, the implemented queue class (from the 
developers) is insulated from change and will not be modified at all. 
 A test result file is declared as an output file in this main function (test driver), so that it 
records the result of each test message execution.  The driver is to store the test result of each 
message into the test result file, while the program is executing. 
 Test messages are embedded in the main function in the test driver example (see Figure 12).  
Alternatively, a test message file, containing those test messages, can be declared as an input file 
in the main function, and each test message is accessed as an input record, while the file is read.  
Test message files are ASCII text type files and each test message is stored in the files as a string.  
Therefore, a program code generator is utilised to read the test message file as an input file, and 
then produces the source code of a test driver program. 
 A test driver program, in which a class under test is included and a test message file and a 
test result file are declared, can be manually/automatically produced by a program editor or a 
program source code generator.  If a source code generator can play as a test driver generator.  A 
complete C++ test driver program can be automatically built by answering the prompts asked by 
the generator, see Figure 11.  The prompts may ask to enter the names of (1) a class under test 
(e.g. queue.h in Figure 12), (2) a test message file, (3) a test result file, and (4) a function to reveal 
state value, e.g. amt() in Figure 12.   

Test Driver Generator

A test driver (C++
code ) program

Test driver
pattern

The name
of a class
under test

The name of an
abstract class or

external function to
reveal state values

A test
message file

name

A test result
file name

Figure 11 Possible requirement to generate test driver in MACT  
 Of course, the class under test and the function to show state values should be developed at 
first.  The class is stored as a user-defined class with '.h' sub-program name in proper directory, 
such as 'c:\borlandc\include\' sub-directory in Borland C++∗.  Then, the class is included in the 
generated test driver program and the function (friend function) is linked as an external function 
[29] with the program.   
 Another way is that the function can be defined in an abstract class [29], which may also be 
stored with '.h' sub-program name in 'c:\borlandc\include\' sub-directory.  In order that the class 

                                                        
∗ Borland C++ for Windows, Version 5.0, Borland International, Inc. 
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can be included and inherited by the test driver program and subclass in the test driver program 
respectively, see Figure 12.  In which, the right hand side program is a test driver program 
example.  The parts high lighted in grey are inlayed when testers enter proper names in response 
to the prompts of the test driver generator.  The rest parts without high light is the test driver 
pattern, see Figure 11. 

// file name: testdriv.cpp
#include <iostream.h>
#include "queue.h"
#include "amt.h"

class Queue :  public amt {};
void main(void) {
fstream outfile;
outfile.open("result.txt", ios::out);
if (!outfile){
cerr <<"Cannot open test result file\n";
abort ();
}
Queue Que;

:
Que.add('z');
outfile<<"add()\t"<<Que.amt()<<'\n';
Que.add('y');
outfile<<"add()\t"<<Que.amt()<<'\n';
Que.del_data();
outfile<<"del_data()\t"<<Que.amt()<<'\n';
Que.is_empty();

:
}

// File name: amt.h
// An abstract class and amt() shows
// state value
class amt : public queue{
public:
    void amt(){
    cout<<count<<'\n';
  }
};

// File name: queue.h
// The class under test, called queue,
// shows  in Figure 3
const int Size = 5;
class queue{
protected:  char  Q[Size];

:
}

// Test Message file
add('z)
add(y)
del_data()
is_empty()

:

Figure 12 The example of test driver generation.  
 The diagrams from left top to down in Figure 12 are the class under test that is stored with 
queue.h file name, an abstract class which inherits the class under test and contains a function to 
show state value, and the test message file respectively.   

8.2 Test result inspector 

 The test result inspector in MACT will parse the test result records (the messages and the 
resultant states of the messages) one by one using the test oracles in the tree.  The oracles of 
queue (Figure 5) contain the expected state for each expected message.  The inspector opens the 
test result file as an input file, and it can sequentially read each record, and then compare the 
function name and state value in the record with the oracles in the tree.  If the state value in a 
record mismatches the expected state value in the tree, then an error is deemed to have occurred.  
The algorithm of inspecting the test result file is given in Figure 13. 
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STEP 0 set root to current
STEP 1 while not end of test_result file
STEP 2   read the test_result record and store data to funct and state two variables
STEP 3   if all children nodes of the current node have been traced go to STEP 5
STEP 4      if a child node’s funct_name = funct and state is satisfied with its state condition
                      then the test_result record is correct;
                              assign the child node’s pre to current and
                              go STEP 6
                      else go to STEP 3
STEP 5   print “this test result record is in error”
STEP 6   go to STEP 1

Figure 13 The algorithm to inspect the test results with the oracle tree
 

 For example, when the first record (function name = "add()", and count = "1") of the test 
result file has been read at STEP 2. The inspector, at STEP 3, will look for a child node of the root 
(it is also the current node at the moment) in Figure 5 which contains the add() function name 
and its state condition is satisfied with the state value (count = 1). The middle child node of the 
root matches the requirement.  Therefore, the current node moves to the middle node of the root 
when the statements in STEP 4 have been executed.  
 Following the above algorithm, the Test Result Inspector can detect errors when state values 
in the result file cannot be matched with the state conditions in the oracle tree.  For example, if 
count = 6 after executing an add() function, then an error message should be reported by the 
inspector. Because the state value 6 will not be satisfied with any state condition in the oracle 
tree, see Figure 5.  If the inspector can not respond this with an error message, then the error 
existed in the Que.  That intends the Que may not have ability to handle the over flow problem, or 
the count data member in the Que may be accumulated improperly. 

9 Future Work and Conclusions 

 The core of MACT is a threaded multi-way tree (test case tree) which simulates the 
behaviour of a state machine.  Test cases can be generated from the tree, which contains the test 
oracle of the class under test.  A key feature of the test case generator is its ability to generate test 
cases even when the state machine has circular references (see Figure 5).  More complicated state 
machines (featuring hierarchies, concurrency, and nested states) can also be represented by this 
approach [7], and provides a topic for future study.  The def-use information of each data member 
in the test case tree nodes can be listed in a data file by the same test message generator 
(discussed in section 5.)  Using stacks to automatically detect the data anomaly is another topic.  
Moreover, it is also worth studying if this du path information can support test data selection for 
the test cases, generated from MACT. 
 The MACT tool can generate all possible intra-class test cases has been discussed, and we 
have also followed data-flow criteria to compute the du paths with respect to the data members in 
the intra-class test cases.  In order to insure the class under test is satisfied with data-flow 
coverage.  We suggest that the steps of object oriented class testing are: 

(1) The data-flow testing is employed at intra-method and inter-method levels.  
(2) At intra-class level, each class is tested as a unit with test cases based on state-based 

criteria. 
(3) The definitions and references of the data members within the sequences of test cases 

need to be computed and detected. 
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Appendix A 

Step 1 Create a pointer queue which can temporarily store tree nodes
Step 2 Create the head node of the tree
Step 3 Add the head node into the queue
Step 4 While not stop building the tree
Step 5 Create a new node and fill the required information in each field
Step 6 While the new node is not a child of the first node in queue
Step 7 Delete the first node from the queue
Step 8 Link the new node as a child of the first node in the queue
Step 9 If the state_name of a node in the queue is the same as the new node’s
Step 10 the pre of the new node threads to the node in the queue
Step 11 Add the new node into the queue

 

 This algorithm can build test case trees, such as a tree illustrated in Figure 5.  A complete 
C++ program, coded following the algorithm, is shown in [30].  


