
Challenging Conventional Wisdom

Abstract

 The earth is flat. Mankind will never fly. Reasonable people believed these “facts” for
thousands of years, but advances in knowledge and technology proved them wrong.

 Does the software testing industry have any such “facts”? In this paper, I will explore common
testing beliefs. Using experiences from SAS, I will attempt to confirm or refute these pieces of
conventional wisdom.

Introduction

 If we all worked on the assumption that what is accepted as true is really true,
there would be little hope of advance.

Orville Wright

 SAS has a long-held commitment to delivering quality products. R&D hired its first tester nearly
twenty years ago. The company then hired the first member of its QA group soon thereafter.
R&D continued with two types of testing groups until earlier this year. QA existed under a
separate management structure as an independent testing group. Most R&D divisions created
their own R&D testing departments and located them (both physically and organizationally) near
their software developers.

 In February 2001, the testers from QA moved into the testing departments of the R&D divisions.
In addition, a small, centralized organization was created to provide global testing services. Since
then, SAS testers have grappled as a community to reconcile the processes and mindsets that
have governed our past---and that will shape our future.

 In the philosophical discussions that followed the reorganization, I heard many varying opinions
about what testers do and how they should do it. I was prepared for and expected to hear
different perspectives from the former QA staff. But I found myself surprised by the diverse
opinions among the existing R&D testing groups.

 Sometimes it was hard to tell whether these passionately-held beliefs were fact or fiction. I
decided to investigate four of the more frequently repeated statements---to see whether SAS had
any experiences to support these opinions. Evaluated in this paper are:

• Requirements are a requirement.
• Test plans improve testing results.
• Working closely with developers pollutes a tester’s mind.
• Testers get no respect.

 The intent of this paper is to evaluate whether our beliefs hold up in practice. I used two main
sources of information. Our DEFECTS tracking system provided the objective data. To collect
subjective data, I interviewed and surveyed the testers, developers, and managers in R&D.

Requirements are a requirement.

A pessimist sees the difficulty in every opportunity;
an optimist sees the opportunity in every difficulty.

Winston Churchill

 Years of research have shown how important requirements are in developing top quality
software. “A complete understanding of software requirements is essential to the success of a
software development effort. No matter how well designed or well coded, a poorly analyzed
program will disappoint the user and bring grief to the developer.” (Pressman, 1992).

 Accepting these points, I explored how the absence of requirements impacts testing. I wanted
to gauge whether testing efforts are seriously harmed if a tester receives a project without the
appropriate requirements specifications. In other words, can good testing happen without
requirements?

 Understanding that many factors affect software quality, I searched for a case study with limited
variables. I found a pair of R&D projects that were appropriate for the study. The pair of projects
was similar in many ways but had two major differences separating them: (1) the second was
more complex than the first; and (2) the first was handed off to the tester without requirements.

 The same developer wrote the code for both projects. Both projects were based on industry
standards. The developer borrowed much of the second project's core functionality from the first
project. Although the same developer wrote specifications for both projects, the tester received
specifications for the second project only. I was told that the tester "didn't ask for them the first
time around."

 The same tester tested the two projects. For the first project, "Project NoReq", she received one
sample test and a rough draft of a user reference guide. She had no knowledge of the targeted
market, the goals of the project, or the problem it hoped to solve. She had two months to test
Project NoReq and spent a frustrating two weeks of it getting up to speed. Once this was done,
she enjoyed working on the project. Project NoReq was her primary focus during that period but
she did support one other project as well.

 If there had been a famine of information with Project NoReq, there was a feast with the second,
"Project Req." The tester received an edited user reference guide, two sample tests, functional
specifications and the requirements for the industry standard upon which the project had been
based. Just as the developer had borrowed code for Project Req, the tester adapted test cases
from the earlier project. She spent two days getting up to speed. She had two months to test
Project Req; it was her primary responsibility but she did support several other minor projects at
the same time.

 During Project NoReq's testing cycle, the tester reported 1.4 defects/KLOC (1000 lines of code).
During Project Req's testing cycle, she reported 2.0 defects/KLOC. Defect detection followed the
same pattern for both projects: all but one defect were found in the first month.

 To date, no external customers have reported defects against either project. Project NoReq has
been in the field since Fall 1999 and Project Req has been in the field since Spring 2000.

 The tester found the results astonishing. Each defect in the first project took so much effort that
it seemed as if she had reported more. She wasted nearly two weeks thrashing about at the
beginning of Project NoReq's testing period. She primarily used "ad-hoc" testing---which was a
fun way to test. It took about a week to convert her “ad-hoc” test cases into an automated
regression suite---which was not fun.

 The defects for Project Req came more easily. The higher complexity in Project Req was
somewhat ameliorated by her experience with Project NoReq and the regression suite she
adapted. The tester used methodical techniques with Project Req---which was a more efficient
and, in this case more tedious, way to test. With the same amount of time, she realized a 30%
improvement in defects/KLOC---while juggling extra workload.

 Are requirements necessary? With requirements, the tester has the potential for excellent
testing. Without requirements, the ceiling on effectiveness is set lower. The testing effort can still
be good, but the tester will report fewer defects and may need dedicated time to find them. The
presence or absence of requirements sets the threshold on the effectiveness of the testing effort.

Test plans improve testing results.

A good plan, violently executed today,
is better than a perfect plan tomorrow.

George S. Patton

 After our two testing groups were merged, the unified testing departments assumed the
responsibility for writing and maintaining formal test plans. Most R&D testing groups had been
preparing informal devices, such as test matrices or test inventories, for years. But few had
extensive experience with the type of formal test plans patterned after IEEE standards.

 A debate ensued about the goals of test plans. Everyone agreed that test plans created a good
historical record of a software release, provided training documentation for new testers, and met
expectations of our regulated external customers. But did formal test plans improve testing
directly? Or, stated another way, did lack of test plans compromise testing results?

 To answer the question, I looked first at one simple metric. Do testers who forego formal test
plans report fewer defects than testers who use formal test plans?

 To set up my case study, I considered recent development projects in our flagship product line.
Each project should have a pair of test teams assigned to it; a team within the R&D department
and a team within the independent testing group. I looked for a variety of testing styles---such as
manual versus automated. I wanted to find test team pairs that maintained attitudes of tolerance
or cooperation.

 I finally settled on four development projects. Three of the test team pairs had the same size; in
the fourth pair, the R&D test team had one more member. I measured the span of time the teams
spent entering defects on each project. On average, the independent test teams used a year
(four quarters) and the R&D test teams used slightly more (five quarters). Other than that, the
test team pairs should have been relatively well matched.

 The independent test teams coexisted within the same management structure. They were
generally located apart from the developers but had access to project information through web
sites, phone calls, and meetings. They used global automation tools provided from a global tools
group. In addition, the independent teams had a dedicated support group to provide systems
administration and tools. One set of these tools gave the independent teams test plan
management. Test plans were required. Developers did not usually review these test plans.

 The R&D test teams worked within the R&D divisions and were led by testing managers. They
were generally located in close proximity to the developers they supported. They had access to
project information through visits, web sites, phone calls, and meetings. The R&D test teams

also used the global automation tools. They had to fend for themselves for customized tools.
Test plans were optional and, in fact, were not used by any of the R&D test teams in this study.
Most used informal testing devices such as test matrices.

 I started by studying the total number of defects entered on each project. In particular, I looked
at the percentage of defects entered by both test teams: the independent teams (Test Plans
required); and the R&D test teams (Test Plans optional). I also included information from one
more group, our Technical Support Division, to gain a sense for how well the projects performed
after release. The results are summarized below.

Project Testing Style

(Manual vs.
Automated)

% of Total
Defects:
Test Plans
Required

% of Total
Defects:
Test Plans
Optional

% of Total
Defects:
Technical
Support

Product
Maturity

R Mostly manual 29% 30% <1% 1st release
S Mix 5% 21% 4% 2nd release
T Mix 5% 54% 10% Mature
U Mostly

automated
 7% 53% <1% 2nd release

 In every case, the teams without test plans found more defects than the teams with formal test
plans. Even when I adjusted for the headstart the R&D test teams had, the gaps barely
narrowed. For these four R&D test teams, lack of test plans did not compromise their testing
results.

 Could formal test plans have value that defects counts would not reveal? I posed the question
to testers from a cross-section of backgrounds. They offered the following answers.

• Three testers believed that test plans had value in providing a format for organizing their
testing materials. However, two of those testers found the official format “cumbersome”
or “bureaucratic.” Both had devised their own informal materials—to which they referred
from the formal test plans.

• One tester theorized that any fault with formal test plans lay not in the concept but in the
execution. Lack of developer review was problematic.

• Many testers view testing as an evolutionary process or a craft. A detailed roadmap at
the outset of a project would prove counterproductive for skilled testers.

• None of the testers believed that formal test plans improved their effectiveness when
testing a specific project.

 Do formal test plans improve testing? The objective data and tester interviews suggest
otherwise. Formal test plans do not improve testing results directly.

Working closely with developers pollutes a tester's mind.

There is nothing either good or bad,
but thinking makes it so.

William Shakespeare

 There appears to be a wide-body of support for close collaboration between developers and
testers. “My best experiences with test organizations have been with … the project testing
specialist and the software test support function. In each case dedicated testing is applied to the
entire project---from start to finish---and in each case the testing resources work in direct support

of the development resources. This fosters close cooperation and avoids unnecessary redundant
testing.” (Hetzel, 1988).

 In many companies, management makes a choice between centralized and decentralized
testing organizations. Since our company recently merged all of its testing resources into R&D
divisions, we are particularly sensitive to this issue. Testers accustomed to the centralized
structure have worried that their independence of thought can be adversely affected by day-to-
day interactions with developers. Are their worries justified? Testers who have spent their entire
career in the decentralized groups are enthusiastic about working with developers. But could that
be because they have not experienced the other structure? Is there any way to measure the
differences between the two philosophies?

 To discern the influence developers have on testers’ effectiveness, I studied four individuals who
had voluntarily transferred from the independent testing group into an R&D testing group years
prior to the testing community merger. Each cited the desire to work more closely with
developers as one of their reasons. So, in all instances, the testers were motivated to make the
new mindset work.

 It was going to be difficult to narrow down the variables. Three of the testers had changed
products when they changed jobs. Three accepted newly-created positions. Two worked on
brand-new products. It might be hard to compare their before behavior with their after behavior.

 But I gave it a try. I checked several objective factors: defect counts; defect detection pattern;
defect severity; and the final status of the defects. The results were intriguing.

Defect Counts
 Every tester had a decline in the number of defects entered after the transfer, including the
tester who had not changed products. I admit to being taken aback by these results.

Tester % Change in Defects
Entered

W -20%
X -55%
Y -9%
Z -86%

Defect Detection Pattern
 After moving into the new group, did the testers tend to enter defects earlier in the releases?
The answer was “not really.” There were no consistent patterns for three of the testers; defects
were clustered at the beginning, middle, and end of releases---both before and after their
transfers. One tester had a steady pattern for all releases, in either job.

Severity of Defects
 A slight trend popped up. We have four severity codes for DEFECTS-- ALERT, HIGH,
MEDIUM, and LOW—with ALERT being the most severe. All but one tester experienced a
decline in the number of defects they entered at the two highest severity levels.

Tester % Change in Defects
Marked ALERT/HIGH

W -14%
X -27%
Y -4%
Z +7%

Final Status of Defects
 I saw interesting changes in three of the status codes we track for defects. Those codes were:
FIXED (the defect was fixed); DUP (the defect was a duplicate of another entry); and NOBUG
(the defect was not really a bug). The results are summarized below.

Tester %Change in FIXED % Change in DUP % Change in NOBUG
W +17% <-1% -6%
X +21% -11% -7%
Y +11% -4% -1%
Z +19% -15% -6%

After studying the objective data, I could draw a few conclusions from the testers’ after behavior.

• They entered fewer defects.
• The defects they reported tended to be less severe.
• They were more likely to enter fixable defects.
• They were less likely to report duplicate defects or non-issues, an efficiency gain for

developers.

 The data were encouraging but I needed to know more. The declines in number and severity of
defects were not intuitive. So I visited these testers, separately, to ask. Were these results
predictable? And did they believe they were more or less effective after the move? All four
testers contributed opinions, which I have condensed in the next section.

The testers were not surprised that defect counts decreased.

• I had collected the number of defects reported--not the number of defects found. Before
the move, they reported 100% of the defects they found. After the move, they reported
only a fraction.

• The before-to-after paradigm shift took them six to twelve months. The two years before
they transferred were their most productive in the independent test group. The two years
after they transferred were their least productive in the R&D test group---as they
struggled to learn new technology, master new processes, and build closer relationships
with developers. I had compared their best before years with their worst after years.

• They found defects earlier in the cycle; therefore, they were more likely to report them via
e-mail or visits. In some instances, developers would enter the defects found by testers.

• Within the R&D test group, there was no implication that a tester’s performance was
related to the number of defects they reported.

The change in severity was understandable.
• The testers had changed products, which meant they had changed developers. The new

developers were better.
• They found the serious defects earlier in the release, when they were less likely to be

entering all defects in the tracking system.

The testers would have expected their FIXED percentages to increase.

• R&D testers often discussed problems with developers prior to reporting defects. Many
defects were 'pre-approved' for fixing.

• The testers were able to devote more time to learning the product. They really did have a
better sense of what was worth fixing.

• With better understanding of the product, the testers wrote better defect entries.
Developers could investigate and resolve problems more easily.

• The testers were less likely to enter 'debatable' defects. They had more time to research
problems. Being familiar with the pressures faced by developers, testers were motivated
to narrow down or eliminate non-issues.

The testers believe that they have become more effective testers since their
transfers.

• They prefer working more closely with developers.
• Testing projects from “start to finish” benefits the project and the tester.

 Can testers lose their independence of thought by working closely with developers? As one
tester acknowledged, the “potential for pollution” does exist. Being aware of the possibility helps
to prevent it. The negatives of close relationships are overshadowed by the positives: shaping
the product through early feedback; feeling part of the team; and gaining a deeper understanding
of the product and the context in which it functions. It is a tradeoff but is well worth the risk.

Testers get no respect.

I do not want people to be agreeable,
as it saves me that trouble of liking them.

Jane Austen

 “Developers don't respect testers.” “Testers are second-class citizens.” “Developers wish
testers would disappear.” I have heard variations on this theme throughout my testing career.

 While I admit to being on the receiving end of poor behavior from developers, it has been the
exception, not the rule. I reviewed the results of a survey conducted at SAS in 1998 that
addressed the working relationships between developers and testers. It showed that testers
typically view the relationships more negatively than developers. However, since the survey did
not use probability sampling and also had a low response rate, the results were not scientific.

 With the assistance of a statistician, I conducted another survey using probability sampling. The
survey population was defined as non-managerial developers and non-managerial testers who
worked on products destined for external customers. I excluded R&D managers and testing
managers to avoid opinions that may have been influenced by employee feedback. I surveyed
only those R&D groups working on products for external customers since their testing
organizations tend to be mature and share common structure and methodologies.

 Using the survey population criteria, I constructed sample frames of 443 developers and 175
testers. From these, I selected two simple random samples. The sample sizes were determined

upon achieving sufficient precision and then adjusted upward to compensate for expected
nonresponse. As shown below, the final sample sizes were 80 developers and 57 testers.

 Sample Frame Sample Size Number of
Respondents

Response
Rate

Developers 443 105 80 76%
Testers 175 71 57 80%

 A separate web-based questionnaire was administered to each sample group of developers and
testers. To help minimize nonresponse, each questionnaire was limited to just four questions
with room for optional comments. (See Appendix I for the survey questions.) The questions
posed to the developers and the questions posed to the testers addressed the same subjects but
were put in terms of their respective roles in the relationship.

 Two of the questions focused on the perceived respect developers have towards testers.
Because there are many ways to interpret what "respect" actually means, I reduced the ambiguity
by narrowing it down to two aspects. First, do developers and testers share positive working
relationships? And, second, do developers value the contributions made by testers? The next
two tables contain the percentage estimates for the different response categories of the two
questions addressing respect. The standard errors of the percentage estimates are given in
parentheses.

 Responses to the Question Concerning Working Relationships

Response Developers: how many testers do
you have a positive working
relationship with?

Testers: how many developers do
you have a positive working
relationship with?

All 81% (3%) 63% (5%)
Most 14% (3%) 32% (5%)
Some 4% (2%) 5% (2%)
None 1% (1%) -

Response Developers: how often have
you valued tester
contribution to the
development process?

Testers: how often do you think
developers value your contribution
to the development process?

Almost always 65% (4%) 26% (5%)
Most of the time 30% (4%) 58% (5%)
Some of the time 4% (2%) 16% (4%)
Never 1% (1%) -

 From the optional comments, I found some clues to the gaps in perception. Developers were
generally quite positive and complimentary in their comments but a few voiced the following
complaints:

• Testers need to be more proactive.
• Testers display a lack of interest in testing new features.
• The attitudes and training of some testers make them a bother and a chore to deal with.

Responses To the Question Concerning Tester Contributions

Most comments from testers were positive as well. Yet they, too, offered hints to the differences
in perception.

• Poor communication exists between developers and testers.
• How testers conduct themselves impacts their relationships with developers.

 Do developers respect testers? This survey confirmed the impressions of the previous survey.
Developers tend to respond more favorably toward testers than testers perceive. Developers are
more likely to report positive working relationships with all testers than testers report with all
developers. Likewise, developers value tester contributions almost always at much higher rates
than testers think they do. Developers at SAS respect their testing staff.

Conclusions

 The earth is round…from space. Mankind can fly…with help. What once seemed impossible is
now true, depending on one’s perspective. As I studied the points in this paper, I found the same
phenomenon. I was able to draw conclusions but they were always with qualifications.

 Requirements are a requirement. I was able to demonstrate a significant improvement in one
tester’s ability to detect defects by adding access to requirements. This increase seems even
more remarkable given the tester absorbed a bigger workload during the period. Receiving
requirements meant better effectiveness and efficiency.
 However, the testing effort without requirements was not a poor one. If undiscovered defects
lurk in the product, customers have not reported any yet.
 Insight: I do not think I have ever met a testing manager, at SAS or elsewhere, who believed
they had sufficient staff to get the job done. I know many R&D managers who complain about the
lack of testing resources. Delivering requirements to testers could be an instant resource gain.

 Formal test plans do not improve testing results. I reviewed objective data concerning four
projects released within the last four years from SAS. I tried to select the projects carefully so
that the variables affecting the testing efforts were as limited as possible. In all cases, the groups
who did not use formal test plans reported more defects than those who did.
 Insight: I firmly believe that formal test plans have value. We must be able to describe what we
have done and how we did it---for both internal and external audiences. However, we should
acknowledge them for what they are---important historical documents that take time and
resources to produce and maintain. Then, we should give our testers the flexibility to create
testing devices that meet the specific needs of the projects they support.

 Working closely with developers does not pollute a tester’s mind. When testers move
closer to developers, do they lose their independence of thought? Slicing-and-dicing defects data
was interesting but inconclusive regarding this statement. I queried the testers about their
experiences and shared their comments. They prefer close relationships with developers and
believe their effectiveness has improved.
 Insight: If they allow it, testers can be influenced negatively by developers. But working closely
with developers doesn’t have to pollute a tester’s mind. With open minds and hard work, testers
can reap the benefits of teamwork without sacrificing their effectiveness.

 Testers do get respect. 95% of both developers and testers claimed that all or most of their
relationships are positive. Testers seemed less sure of the value developers placed on tester
contributions. Yet, overwhelmingly, developers claim to value those contributions.
 Insight: I hope this information helps to shift the perception for testers. Although they might not
express it on a regular basis, developers appreciate the value of having testers.

 I have not discovered that bad practices are good or that good practices are bad. What I did
discover is that our opinions benefit from scrutiny and that a fresh look at conventional wisdom
can produce new and powerful insights into the testing process.

Appendix I – Questions from Respect Survey

From the developers’ survey:

Do you develop software that is or will be used by external customers?
 Possible Responses: Y or N

How many testers do you work with on a regular basis?
 Possible Responses: 0; 1; 2; 3 or more

How many testers, with whom you work on a regular basis,
do you have a positive working relationship with?
 Possible Responses: All; Most; Some; None

Consider all testers you have worked with at SAS, past or present.
How often have you valued their contribution to the development process?
 Possible Responses: Almost Always; Most of the time; Some of the time; Never

From the testers’ survey:

Do you test software that is or will be used by external customers?
 Possible Responses: Y or N

How many developers do you work with on a regular basis?
 Possible Responses: 0; 1-2; 3-4; 5 or more

How many developers, with whom you work on a regular basis,
do you have a positive working relationship with?
 Possible Responses: All; Most; Some; None

Consider all developers you have worked with at SAS, past or present.
How often do you think developers value your contribution to the development process?
 Possible Responses: Almost Always; Most of the time; Some of the time; Never

Acknowledgements

Special thanks go to Sue McGrath Carroll, Mark Traccarella, Stephanie Tysinger, JoAnna
Maguire, Liza Lucas, Audun S. Runde, Ph.D., Cynthia Morris, and all of the anonymous testers
who contributed to this paper.

References

Bill Hetzel, 1988. The Complete Guide to Software Testing (Second Edition).
 Wellesley, Massachusetts: QED Information Sciences, Inc..

Roger S. Pressman, 1992. Software Engineering: a Practitioner's Approach (Third Edition).

New York: McGraw-Hill, Inc.

SAS and all other SAS Institute product and service names are registered trademarks
or trademarks of SAS Institute Inc. Cary, NC.

Elizabeth C. Langston

Elizabeth C. Langston is a Principal Tester at SAS, working in the Testing Process and
Research department of the Central Testing Services division. She has more than
thirteen years of experience in software testing and test management. She has also
served in the United States Air Force as a data automation officer. Ms. Langston has a
Bachelor of Science degree in Computer Science from the University of Mississippi and
a Master's degree in Computer Science from North Carolina State University.

	Paper
	Bio

