

STARWEST 2000

Creating a Test Plan Database for Standardized
Tests Across Multiple Nodes:

Removing yourself from the Database Role

Colleen L. Sherman
October 27, 2000

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 2

Table of Contents

I) Overview……………………………………………………… 3

II) Sample Application…………………………………………… 4

A) Modules………………………………………………….. 4
B) Nodes…………………………………………………….. 4
C) Actions…………………………………………………… 4
D) Expanded TreeView…………………………………….. 5
E) Notes……………………………………………………. 5

III) Sample Tests…………………………………………………. 6

A) Different Tests for Different Types of Nodes…………… 6
B) Test Descriptions………………………………………… 6

IV) Original Test Plan Method……………………………………. 7

A) Excel Spreadsheet………………………………………... 7
B) Doctoring the Excel Spreadsheet………………………… 8
C) Updating Nightmare……………………………………… 8
D) Updating Module listing in Defect Tracking Database….. 8
E) Time for Enhancements………………………………….. 8
F) Drawbacks……………………………………………….. 9

V) The Database Solution!………………………………………. 10

A) Node Test PopUp………………………………………… 10
B) Front-End Views………………………………………… 11
C) Benefits………………………………………………….. 11

VI) Closing……………………………………………………….. 12

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 3

I) Overview

This is a presentation of a database for test plans as not seen in some of the popular testing tools on the
market today. The focus is geared towards Web testing of an application with nodes of similar properties;
however, this concept can be applied to Client Server testing and other testing as well. If this concept
exists in a tool somewhere out there already, then I’ve reinvented the wheel, but so far I have not seen it!
Most test databases on the market that I’ve seen offer the ability to enter tests in a linear style, without the
ability to repeat easily the same tests for many different nodes. If you have a large quantity of nodes that
you need to test in a similar way, why not create a 2 dimensional storage facility with tests on one axis, and
nodes on another, combined with different views for the testing lead, tester, program lead, and
management.

This presentation will take the participant on a journey through the long-winded effort of a manual test-
tracking approach that transformed the testing lead’s job into an administrative nightmare. The original
testing approach offered test security to the project, but took up unnecessary time that could have been
better spent on actually testing the application! The concepts were all there from the start, and only through
the manual testing coordination efforts was it discovered that there is a better way – the database way! See
the old approach first, and the extensive administrative labor involved, then witness the combination of
necessary testing procedures with the efficient and accurate solution that a test plan database can offer.

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 4

II) Sample Application

First let’s examine a fictitious Web Financial Application to use as our model throughout the
presentation…

A) Modules

This application has 4 Modules, or categories, and is accessible in the form of a TreeView, or
accordion format. The Modules are “Payments”, “Receipts”, “Reports”, and “Maintenance”.

Financial Application

 • Payments
 • Receipts
 • Reports

• Maintenance

B) Nodes

If you expand the TreeView, you can see that the “Payments” Module has 3 Nodes, or sub-
categories. The Nodes are “Create Payment”, “Cancel Payment”, and “View Payment”.

Financial Application

• Payments
• Create Payment

 • Cancel Payment
 • View Payment

 • Receipts
 • Reports

• Maintenance

C) Actions

Expanding the “Create Payment” Node, you can see that there is one Action in this Node. The
Action is “Confirm”.

Financial Application

• Payments
• Create Payment

 • Confirm
 • Cancel Payment

 • View Payment
 • Receipts

 • Reports
• Maintenance

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 5

D) Expanded TreeView

Likewise, if you expand the entire TreeView of the application, you can see all of the Modules,
Nodes, and Actions.

Financial Application

• Payments
• Create Payment

 • Confirm
 • Cancel Payment

 • View Payment
 • Receipts
 • Create Receipt
 • Confirm
 • Cancel Receipt
 • View Receipt
 • Reports
 • Payment Report
 • Receipt Report
 • Summary Report
 • Maintenance
 • Edit Accounts
 • Edit Currency

• Add Users
 • Set System Date
 • Set

E) Notes

Please keep in mind that this sample application has 4 Modules, 13 Nodes, and 3 Actions. This
concept was designed for a project with 4 applications, the largest having approximately 10
Modules, 200 Nodes, and 50 Actions. So while a manual test tracking approach may seem
manageable for a small application, it is not suitable for a large application. A database solution is
needed!

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 6

III) Sample Tests

Let’s look at some sample tests to be used as examples in this presentation, and how the tests apply to
different types of Nodes.

A) Different Tests for Different Types of Nodes

In the sample Financial Application, there are different types of Nodes. Some Nodes are
Interactive, meaning the user has the ability to add new records, edit existing records, or delete
records (example “Create Payment”). Some Nodes are Inquiry, meaning the user can only view
the records (example “View Payment”).

Because Interactive Nodes have more functionality for the user, more tests need to be performed
on such nodes. Subsequently, fewer tests need to be performed on Inquiry Nodes. For example,
testing “Required Fields”, which is trying to save a record with system-defined required fields
null, needs to be performed on Interactive Nodes, but does not need to be performed on Inquiry
Nodes because the Inquiry nodes do not offer the ability to save a record.

B) Test Descriptions

Below is a list of sample tests and their descriptions. Also listed are the types of nodes to which
the tests are relevant.

Test Description Relevant to
following
Node types

1) Required Fields Add or edit record. Try saving record with first required
field null. Verify that message pops up “Required Field
missing”. Perform this test on all required fields in node.

Interactive

2) DropDowns Examine DropDown fields in records. Verify that there are
horizontal and vertical scroll bars, if necessary, to navigate
through DropDown list. Verify that columns in DropDown
list have headings.

Interactive

3) Tab Sequence Tab through all fields of search criteria and records. Interactive,
Inquiry

4) LookUps Verify that LookUp window pops up, and fields populate
correctly in criteria and records.

Interactive,
Inquiry

5) RadioButtons Test functionality of Radio Buttons in records. Interactive
6) Color Examine color of entire node… window, fields, field labels,

etc.
Interactive,
Inquiry

7) Font Examine font of node… field labels, record and criteria
labels, etc.

Interactive,
Inquiry

8) Add New
Record

Add new record in node, and retrieve record. Verify record
contents.

Interactive

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 7

IV) Original Test Plan Method

The original test plan method of the project for which this concept was designed is as follows.

A) Excel Spreadsheet

An Excel spreadsheet was created with the application’s Modules, Nodes, and Actions listed
vertically, and tests listed horizontally. Unfortunately, an 8 ½ by 11 inch, or even 14 inch
document is only so wide, so only a certain number of the desired tests fit on the document.
Consequently, a subsequent document was created listing the tests not shown here, with a column
“More Tests” on the first document to reference the completion of the tests on the subsequent
document. Cumbersome! A column was also added called “Test Complete”, symbolizing that all
tests have been completed on that node.

Financial Application TESTS

Required
Fields

Drop
Downs

Tab
Sequence

LookUps More
Tests

Test
Complete

• Payments
 • Create Payment
 • Confirm
 • Cancel Payment
 • View Payment
• Receipts
 • Create Receipt
 • Confirm
 • Cancel Receipt
 • View Receipt
• Reports
 • Payment Report
 • Receipt Report
 • Summary Report
• Maintenance
 • Edit Accounts
 • Edit Currency
 • Add Users
 • Set System Date
 • Set

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 8

B) Doctoring the excel spreadsheet

Because some of the nodes are Interactive, and some are Inquiry, different tests needed to be
performed on different nodes. Before the test plan was distributed to the testers, the nodes were
updated according to which tests needed to be performed. “N/A” or “Not Applicable” was entered
into cells for which that column’s test need not be performed. For example, no need to check
Required Fields of Inquiry Node “View Payment”.

Financial System TESTS
Required

Fields
Drop

Downs
Tab

Sequence
Lookups More

Tests
Test

Complete
• Payments
 • Create Payment
 (Interactive Node)

 See Doc2

 • Confirm (Action) N/A N/A N/A N/A See Doc2
 • Cancel Payment
 (Interactive Node)

 See Doc2

 • View Payment
 (Inquiry Node)

N/A N/A See Doc2

C) Updating Nightmare

Testers received a printout of the excel spreadsheet to follow as a test plan. They indicated test
completion on the test plan by writing a checkmark in the test cells that were completed. These
checkmarks had to be then typed onto the online document to indicate what was complete in each
node.

Also, a defect that prevented full testing of a node was also written on the test plans by the testers,
then transferred online. This was so that the tester would know to not revisit testing of that node
until the preventative defect was closed.

D) Updating Module listing in Defect Tracking Database

Not only were the modules, nodes, and actions entered into an excel spreadsheet, but they were
also entered into the defect tracking database. This created a DropDown list for the module field
of the defect when the tester was entering a defect. This module could later be used in a search to
find all defects of similar modules, nodes, and actions.

Every time the Node names changed, or Nodes were deleted or added, the defect tracking database
also had to be updated separately in addition to the excel spreadsheet.

E) Time for Enhancements

This was not a finished project at the time of initial testing! Nodes were being added, deleted,
renamed, and moved throughout the whole process. This meant adding new rows to the excel
spreadsheet, shading nodes that had been removed, renaming nodes with new names, etc.
Occasionally, nodes that were removed were returned, and this too had to be indicated on the test
plan.

Changes to nodes and structure were emailed from programming lead to testing lead. The changes
were then applied to the excel spreadsheet, and also to the defect tracking database. For example,
if a node name changed or was moved to a different module, the defect tracking module
DropDown list had to accurately reflect the new name or new structural placement.

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 9

F) Drawbacks

• Transferring testers’ handwritten checkboxes from test plan to online document took
unnecessary time, and there was room for error.

• Had to photocopy testers’ test plans so they could continue testing while test plans were

updated online.

• The online documentation never fully reflected current completion of work because testers

were updating handwritten test plans while testing lead was making online updates.

• Because there were 2 test plans for the application (due to too many tests for one document,

as earlier mentioned), preventative defects had to be updated on 2 different test plans, which
is a duplicate effort.

• The enhancements and node changes were first written in email by the programming lead,

then transferred online to the test plan by the testing lead, which is indirect, timely, and prone
to error.

• Enhancements and node changes had to be made to the excel spreadsheet and the defect

tracking database, which is a duplicate effort.

• Node additions, deletions, updates, and moves were not always accurately conveyed to the

testing lead. For this reason, the testing lead continually printed the structure of the
application, including modules, nodes, and actions, and compared the enhanced structure to
the test plans, then updated the test plans accordingly. Talk about tedious!

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 10

V) The Database Solution!

Instead of this long drawn-out manual effort of test plan creation and updates, and enhancement updates, a
database and GUI front-end can be created to maintain testing of generic functional testing across similar
nodes.

A) Node Test PopUp

The following are examples of Node PopUps the testers can see while interacting with the
database through the GUI front-end. The PopUp is interactive, and the tester can indicate which
tests are completed, with audit information (tester and date) being stored in the backend, or front-
end if desired.

Example of Incomplete Interactive Node:

Node Name: “Payments – Create Payment”

Type of Node: Interactive

Tests for Node:
Tests Completed
1) Required Fields √
2) DropDowns √
3) Tab Sequence
4) LookUps
5) RadioButtons √
6) Color √
7) Font
8) Add New Record

Defects preventing test completion: #306 (OPEN)

*******Node incomplete********

Example of Completed Inquiry Node:

Node Name: “Payments – View Payment”

Type of Node: Inquiry

Tests for Node:
Tests Completed
3) Tab Sequence √
4) LookUps √
6) Color √
7) Font √

Defects preventing test completion: (none)

********NODE COMPLETE!*******

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 11

B) Front-End Views

Besides the Node PopUp for testers, there can be many views of this database. For example, a
view by Module or Node of percent completion, a view of Nodes that are pending defect fixes or
information requests, a view of Module/Node structure to which the program lead can make
enhancement changes, and many more views. These views can be seen online or in report format.

C) Benefits

• The test plan database will accurately reflect what is currently complete! As soon as the tester

updates a test in a node, that information can be made accessible and accurate to any
interested party via the form of report printout or GUI view.

• There is less dependency on testing lead to update online test plans with testers’ completion

updates and program lead’s enhancements. If the testing lead is absent, the show will go on!
Just look in the database for open testing items.

• The testing lead can be testing instead of typing in excel all day! This database solution

minimizes the administrative testing role on the project, freeing up resources to help with
actual testing!

• Previously the test plans had to be manually updated with color-coding to indicate which

nodes needed data, which nodes’ retesting was pending a defect fix, which nodes needed
information before further testing could be completed, etc. With the current Database
solution, each node can be flagged with such criteria, so that a reports can be generated by
node or by category (ex: need data in order to test) for testing needs.

• The test plan database can be connected to the defect tracking database. Therefore, the

defects that are preventing testing, as indicated by the tester in the node Pop-up, can be
automatically flagged in the defect tracking database as high priority. This way those defects
can be fixed first (example, blow-up defect #306 can be fixed before fixing other cosmetic
defects, so testing can continue sooner). The defect tracking database can communicate to the
test plan database, indicating when high priority defects are fixed, and node retest can occur.

• Tests can be indicated by red color in Node PopUp as high priority. Then tester will know to

focus on those tests in the node, then move on to the high priority tests in the next node, and
so on. Tests can also be added or deleted in background of database. These changes will
automatically reflect in the node PopUp.

• If defect tracking database is connected to test plan database, defect tracking database can be

scanned for keywords of defects (ex: “Problem with Checkboxes”), and keywords with high
defects associated can be fed into the test plan database as new tests (ex: “Verify
Checkboxes”).

• Testers’ performance can be tracked efficiently through audit trails of node testing

completion. This can be used for evaluation purposes of testers, or for estimating remaining
test effort on the project.

 Return to Table of Contents

Colleen L. Sherman 10/27/2000 Page 12

• As enhancements are made, node additions, deletions, name changes, or moves can be

directly made by program lead into the database either through a view of the nodes
themselves or a view of the entire module structure. Program lead could also indicate if a
node changes type, for example, from Interactive to Inquiry, which would automatically
change the appropriate tests in the background (ex: don’t need to test required fields in an
Inquiry node, so that test would be removed from the node).

 View of module/node structure as seen by program lead:

Financial Application

• Payments
 • Create Payment
 • Confirm
 • Cancel Payment
 • View Payment
• Receipts
 • Create Receipt
 • Confirm
 • Cancel Receipt
 • View Receipt
• Reports
 • Payment Report
 • Receipt Report
 • Summary Report
• Maintenance
 • Edit Accounts
 • Edit Currency
 • Add Users
 • Set System Date
 • Set

VI) Closing

Hopefully this journey has offered you the assurance of the efficiency you can obtain through the
implementation of a Test Plan Database. Don’t be the database – let technology assist you! I invite you to
discover the benefits of this solution for yourself and enjoy the time and freedom you will gain!

