
 1999 Robert J. Muller, all rights reserved Page 1

Earning Function Points in Software Projects
Robert J. Muller, Chief Information Officer

ValueStar, Inc.
1120A Ballena Blvd.

Alameda, CA 94501-3682
Phone: (510) 814-7191 Ì E-mail bmuller@valuestar.com

Abstract
Measuring the progress of a software project requires a

metric of the value the project creates. Progress implies a
plan against which to measure. The concept of earned value
provides a clear metric of project progress relative to a plan.
For this purpose, the usual cost metrics for earned value are
less interesting in a software project than other measures of
value. In particular, function points provide a measure of
value that earned value metrics can easily use to compare
what you've created to what you plan to create.

Value
Software projects create value.
Surely, this statement is a truism. What development

manager would take pride in a software project that did not
create value? Nevertheless, the statement is not as straight-
forward and obvious as it might appear. To illustrate, ask
yourself a question--the same question philosophers have
been asking since there was philosophy:

What is value?
To measure value, in particular, you must have some

clear definition of what value is. Without penning a philo-
sophical treatise, take as a starting point Gerald Weinberg's
definition of software quality [Weinberg 1992, p. 7]:

Quality is value to some person .
The question of value thus is relative to people. In the

case of a software project, the people who define value are
the project's stakeholders: customers, marketing, executives,
and even the developers and managers of the project.
Stakeholders inject their needs into the project through ex-
pectations that the project manager collects and balances
during the planning phases of the project. Expectations
translate into requirements, and requirements translate into
use cases, functional specifications, or other analytical
statements of the scope of the project. By the end of the
initial planning stage, the project manager should have a
clear statement of the scope of the project and its value rela-
tive to the project stakeholders' expectations [Muller 1998].

Given a plan, the project manager must then manage the
project, controlling the delivery of the planned value to the
stakeholders against a schedule and budget to a defined
level of quality [Kerzner 1995, PMI 1996]. This paper devel-

ops metrics for measuring progress that the project manager
can use in managing delivery of value.

It should be clear from this discussion that measuring
the amount of code you produce is not relevant to control-
ling the project. Code is not value, what code does for
stakeholders at what price is value. How do you measure
that?

The approach this paper takes is to break the question
into two parts. First, how do you measure cost and func-
tionality? Second, how do you relate delivered functionality
to the stakeholder's expectations?

Measuring cost is relatively well understood in the
project management world. Measuring functionality is not,
since many projects still measure output in terms of lines of
code rather than function points or other direct measures of
functionality.

Measuring delivered value is even less well under-
stood, although the project management world defines a
clear set of metrics for it: earned value [Kerzner 1995, PMI
1996]. Earned value is the value of the product a project de-
livers as part of its planned activities. This definition spe-
cifically measures value against expectations. Value not
planned is not earned value. Earned value thus attacks two
project management problems:
• Scope creep, the delivery of unplanned value
• Schedule and budget overruns, the delivery of planned

value late or at too great a cost.

Baselining a Project
To control a project, you must first draw a line in the

sand against which to measure progress. The planning pro-
cess does this by defining various baselines.

A baseline is a particular set of versions of systems
that satisfy a set of exit criteria [Muller 1998]. The systems
are the cost, schedule, or product systems you build during
the project. The exit criteria are the quality, schedule, or cost
metrics you will use to determine when a subsystem is com-
plete.

The cost-oriented baseline is the project budget. Each
activity in the plan has a budgeted cost based on estimated
effort, labor and overhead costs, and material costs. The
budget also has a time component that relates budgeted
costs to milestones in the project schedule. By a certain

Earning Function Points in Software Projects November 28, 1998

 1999 Robert J. Muller, all rights reserved Page 2

milestone, the project manager intends to have spent a cer-
tain amount of project resources.

The value-oriented baseline is similar. Each activity in
the plan has a planned value based on analysis of how the
activity contributes to satisfying stakeholder expectations.
Again, milestones provide checkpoints at which the project
will have delivered a specific amount of value.

Both of these baselines depend on a lower-level base-
line of the software (and other types of) objects the project
intends to deliver. At each milestone, the system contains a
planned set of software systems, usually called the system
configuration. The versions of software objects in this
baseline (the alpha baseline, beta baseline, production base-
line, and so on) provide a certain level of value to the
stakeholders.

It's important to realize that baselines are themselves
versioned systems. As the environment and understanding
of the software system changes, the baselines must change.
Tracking the versioning of baselines is a large part of the job
of the project manager as the project progresses. It's also
part of the project manager's job to ensure that the baseline
changes in a controlled way.

Baseline budget and schedule are the basis for meas-
uring earned value. The changes to baselines thus directly
affect how you measure earned value and hence how you
measure project progress.

Cost
The idea behind the standard project management con-

cept of earned value is to combine schedule and cost in a
measurable system of project control [PMI 1996, Kerzner
1995]. The original government standards that developed
the approach named it Cost/Schedule Control System Crite-
ria (C/SCSC) for that reason [Fleming 1983].

It's important to note, however, that the concept of
earned value usually used by project managers does not
directly address value at all, despite the name. Rather, the
metric should be called earned cost, because what you're
really measuring is the budgeted cost you've incurred, not
the planned value you've earned.

Cost is the amount of money you spend to develop a
software system. Cost accounting is a well-known, compre-
hensively taught subject. To compute the cost for an activ-
ity, for example, you add up the following components:
• Fixed Costs (rent, etc.)
• Variable Costs

• Pay rate x hours worked x burden
• Regular versus overtime
• Bonuses
• Unit cost x number of units

Function Points
A function point is a weighted count of the number of

features in a software product [IFPUG 1994, Garmus 1996]. A
key advantage of function points over other measures of
software size is that you can count function points from the
requirements specification (the complete one, not the infor-
mal one). Lines of code, the main competitor, requires the
code be there before you can accurately count. You can use
function points to predict effort, cost, and duration once
you establish historical data for your organization.

Function point counting requires some training, the
best source of which is the International Function Point
Users Group and its conferences [IFPUG 1994]. Garmus and
Herron have an excellent tutorial [Garmus 1996]. To count
function points, you develop a complete functional specifi-
cation that defines the scope of the system, then count
these items for that system:
• External Input (for example, data entry forms)
• External Output (for example, reports)
• External Query (for example, find dialogs)
• Internal Logical File (for example, relational tables this

application maintains)
• External Logical File (for example, other tables this

application refers to but does not maintain)
Once you have counted an item, you weight it with a

complexity factor based on the number of elements within
the item (fields in data entry forms and reports, columns in
tables, and so on). Summing the weighted counts gives you
the raw function points. You then adjust that value with a
weight for the environment which takes into account every-
thing from data communications facilities to performance
requirements to transaction rate to reusability to maintain-
ability. The standard client/server database application sys-
tem, for example, has a weight near one, while a real-time
embedded system with special communications require-
ments may be significantly greater than one.

Value Baselines
The critical metric for earned value is planned, budgeted

or baselined cost and value. Without a baseline for cost or
function points, you cannot measure earned value, since
you cannot measure planned/budgeted/baselined value.
Again, various baselines provide such values for each ac-
tivity in the project, with summations at milestones in the
project schedule.

Cost is easy to allocate to activities. Each task gets an
estimated cost based on its resources and outputs. But it is
harder to estimate the value for an individual activity.

A key decision you must make is when to earn the
value in a system. The easiest way to specify this is to earn
value when you complete a subsystem that actually delivers
the complete functionality expressed by the function points.
For example, a subsystem in the functional specification

Earning Function Points in Software Projects November 28, 1998

 1999 Robert J. Muller, all rights reserved Page 3

contains a complete function that lets a user enter a specific
transaction. Until that subsystem is complete, the user can-
not enter that transaction, and so the system does not pro-
vide the specified value.

Since most software systems do not deliver value until
the alpha release or later, this way of allocating value to
tasks will not be of much help in controlling the middle part
of a software project (the most important part). You can do
two things about this.

First, deliver as much value as early as you can in the
project. Instead of waiting to get a working system late in
the project, get small parts of the system working as early as
possible. These early milestones thus give you a way to
earn value throughout the project as features become avail-
able. A good exit criterion for these milestones is whether
the system is ready for a system test by quality assurance.

Second, you can
allocate the function
points for a subsystem
among the activities
using some kind of
allocation algorithm. A
straight-line method,
for example, allocates
the function points
evenly between all the
tasks that contribute to
a subsystem. At a mile-
stone, you then sum up
all the function point
fractions from com-
pleted tasks much as
you would sum up the
costs of the tasks. A
weighted method might
use the effort or cost
estimate to weight the allocation of function points. You
might also have some kind of technique for allocating func-
tion points based on your estimate of how much value the
task actually contributes or how "complete" the task or
subproject really is.

Note: I've had more success with straight-line
methods than with weighted or "smart" methods of
value allocation. Once you get subjective by introduc-
ing estimates, you are falling back on techniques that
I've usually found feeble at best. You may have better
estimating methods than I have seen, so by all means
try it and let me know what you've done.

Earning Value
You've estimated costs. You've counted function

points. You have a schedule with milestones. How do you

actually measure the value you've earned? Value in function
points or cost is only part of the story.
• Time: How does the timing of creating and delivering

value affect it?
• Cost: How does the cost of creating and delivering

value affect it?
There are two key principles to earned value.

• You earn value when you deliver it.
• You only earn what you promised.

First, whatever allocation method you use for appor-
tioning value in function points or cost to the scheduled
tasks of your project, you only earn value when you deliver
something that has value. It is therefore a good idea to put
milestones into your project schedule that represent actual,
delivered value, then to measure earned value only at those
milestones. It is important to realize that the milestone oc-

curs when you deliver the value,
not just because you've reached
a date.

Earned value, on the other
hand, uses the dates from the
planned milestones, not the
achieved ones. At any given
date, earned value thus repre-
sents what you planned to
achieve by that date, not what
you've actually achieved.
Whether you take measurements
once a week or once a month,
the earned value thus tells you
how you're doing relative to
what you planned to do.
Changing the baseline, of
course, affects the planned dates
and thus changes the earned
value.

Second, earned value is by definition planned value. If
you didn't plan to deliver a function, it does not become a
part of your earned value. This idea forces you to see how
your system corresponds to stakeholder expectations and
lets you control scope creep. This is the fundamental idea
behind earned value.

Earned Cost Arithmetic
Now for some simple earned cost arithmetic. The stan-

dard metrics in the C/SCSC method measure various costs at
a given milestone. Most project management software pro-
vides these metrics.
• Budgeted Cost for Work Scheduled (BCWS)
• Budgeted Cost for Work Performed (BCWP)
• Actual Cost for Work Performed (ACWP)

 BCWS is the cost you've budgeted for work through
the milestone date. For example, if the milestone takes place

V
al

ue

Date

Current Date

Planned Cost (BCWS)

Actual Cost (ACWP)

Earned Cost (BCWP)

Cost
Variance

Schedule
Variance

Time Behind
Schedule

Earning Function Points in Software Projects November 28, 1998

 1999 Robert J. Muller, all rights reserved Page 4

on November 3, and the budget baseline calls for spending
$45,000, then $45,000 is your BCWS on Nov. 3.

BCWP is the originally budgeted cost of completed
work at the milestone date. This is earned cost. That is, at
the milestone date you've completed a certain number of the
tasks you've planned. The planned cost in the budget base-
line for those completed tasks is the BCWP. For example,
given the planned $45,000 cost at the milestone on Nov. 3,
say you've completed only 80 out of the 100 tasks you
planned to complete. The BCWP is the amount of cost allo-
cated to the 80 tasks, say $35,000. You've earned $35,000.
Alternatively, you may have completed another 20 tasks
ahead of schedule; then your earned cost might be $55,000,
more than you planned.

 Finally, ACWP is the actual cost of completed work.
The other numbers count only the planned cost. This one
measures the real cost you've incurred to reach the mile-
stone. This number gives you the basis for some further
derived metrics that compare actual to earned cost, such as
cost variance and schedule
variance.

Cost variance is
BCWP - ACWP, the differ-
ence between planned
work performed and actual
work performed. This num-
ber tells you about money
you've spent that you did-
n't intend to spend on the
specific tasks you've com-
pleted. Schedule variance
is BCWP - BCWS, the dif-
ference between planned
cost of work performed and
planned cost. This is the
difference in value between
what you planned to
achieve and what you've
earned at the milestone
date. This number tells you
about the money you haven't spent because you didn't do
what you promised to do.

The Cost Performance Index is BCWP divided by
ACWP, the ratio of earned cost to actual cost. This ratio
tells you the cost efficiency of your project: how well you
are using resources to get results. If earned cost is higher
than actual cost, you are spending more than you planned
to get the planned result. If earned cost is lower than actual
cost, you are spending less than planned.

The Schedule Performance Index measures the time effi-
ciency: BCWP divided by BCWS, the ratio of earned cost to
planned cost. If earned cost is less than planned cost, it
means you've spent less than you planned to on planned
tasks, usually because you haven't done the tasks you've

planned. If earned cost is higher than planned cost, you're
ahead of schedule on task completion.

Value Arithmetic
Now for the equivalent earned value arithmetic. These

metrics measure value in function points at a given mile-
stone. You will usually need to track these on your own, as
project management systems will not collect the metrics for
you.
• Budgeted Value for Work Scheduled (BVWS)
• Budgeted Value for Work Performed (BVWP)
• Actual Value for Work Performed (AVWP)

 BVWS is the value you've planned in function points
for work through the milestone date. For example, if the mile-
stone takes place on November 3, and the system baseline
calls for having software that delivers 400 function points
(FP) in value, then 400 FP is your BVWS on Nov. 3.

BVWP is the originally planned cost of completed work
at the milestone date. This is earned value. That is, at the

milestone date you've com-
pleted a certain number of
the tasks you've planned.
The planned value in the
system baseline for those
completed tasks is the
BVWP. For example, given
the planned 400 FP value at
the milestone on Nov. 3, say
you've completed only 80 out
of the 100 tasks you planned
to complete. The BVWP is
the amount of cost allocated
to the 80 tasks, say 350 FP.
You've earned 350 FP. Alter-
natively, you may have com-
pleted another 20 tasks
ahead of schedule; then your
earned value might be 550
FP, more than you planned. If
you are being conservative,

of course, you might not earn anything at all in the case
where you didn't complete the tasks that actually delivered
the value.

 Finally, AVWP is the actual value of completed work.
The other numbers count only the planned value. This one
measures the real value you've delivered at the milestone.
It's a good idea not to assume that this value is precisely
what the functional specification called for. Instead, go back
and do another function point count on the delivered sys-
tem. The new number may be radically different from the old
one if you haven't been paying attention to the right things.

As with earned cost, this number gives you the basis
for some further derived metrics that compare actual to

V
al

ue
 (

F
un

ct
io

n
P

oi
nt

s)

Date

Current Date

Planned Value (BVWS)

Actual Value (AVWS)

Earned Value (BVWP)

Value
Variance

Schedule
Variance

Time Behind
Schedule

Earning Function Points in Software Projects November 28, 1998

 1999 Robert J. Muller, all rights reserved Page 5

earned value. Specifically, this metric tells you about value
you delivered that was not planned. These are the things
that developers thought might be nice to have, regardless of
the features not being present in the functional specifica-
tion. This tells you not just about unplanned scope creep
but about uncontrolled software development.

The Value Variance is BVWP - AVWP, the difference
between planned value of the work you've completed and
the actual value of the work you've completed. This metric
tells you about the difference between planned value and
value achieved. Achieving less value than planned by a
given date means that not only have you delivered less
value than you wanted, you've actually delivered less value
in each system. This is usually because you've dumbed
down the specification without changing the baseline.
Achieving more value than planned means that you overen-
gineered the product. You use this to control your technical
management of tasks.

The Schedule Variance is BVWP - BVWS, the difference
between planned value of work performed and the original
planned value of the work. This number tells you how far
you are behind (or ahead) of the set of tasks you planned to
achieve by a given date. It is a straightforward statement
that you are behind or ahead of schedule. You use this to
control your schedule.

The Value Performance Index (VPI) is BVWP divided by
AVWP, the ratio of earned value to actual value. This ratio
tells you the value efficiency of your project: how well you
are containing the natural urges of engineers to give more
value than desired. If earned value is higher than actual
value, you are producing more value than you planned--
overengineering. If earned value is lower than actual value,
you are producing less value than planned--cutting features
to make the schedule or the budget.

The Schedule Performance Index for value measures the
same time efficiency as its cost cousin: BVWP divided by
BVWS, the ratio of earned value to planned value. If earned
value is less than planned value, it means you've produced
less than you planned to on planned tasks, usually because
you haven't done the tasks you've planned. If earned value
is higher than planned value, you're ahead of schedule on
task completion. Measuring the value-based SPI tells you
about schedule efficiency in terms of value rather than cost.
That is, SPI tells you how well you're keeping to schedule
with respect to delivering value, as opposed to spending
money.

Looking Ahead
Of course, just knowing where you are is not enough.

You must then turn around and tell your stakeholders (and
primarily your boss) where you're going. The earned cost
and earned value indexes of efficiency can help quite a lot
here.

Standard forecasting techniques use the basic assump-
tion that, human nature being what it is, your efficiency in
the past is going to be your efficiency in the future. The
Budget at Completion (BAC) sums all cost baselined for the
project. The Estimate at Completion as of the milestone date
(EAC) is the BAC divided by the CPI at that date. The Vari-
ance at Completion (VAC) is BAC - EAC, the difference be-
tween the budget and the estimated cost given your current
cost efficiency. If VAC is negative, the project is going to
overrun its budget. If it's positive, the project is in good
shape!

Moving to value from cost, Planned Value at Comple-
tion (PVAC) is the value you planned to deliver by the end
of the project. Estimated Value at Completion is then the
planned value divided by the VPI (value efficiency). The
Value Variance is then the difference between planned value
and estimated value. If this variance is negative, it means
your project is going to deliver less value than you planned.
This conclusion tells you to rebaseline to the lower value or
to the higher costs or longer schedule required to increase
the value. If the value variance is positive, it means your
project is on track to deliver more than the stakeholders
want, not necessarily a good thing in a competitive, time-to-
market oriented world. Alternatively, a high value variance
might indicate underspecification of requirements. Perhaps
the engineers have uncovered hidden or mistaken require-
ments. This conclusion tells you either to exercise higher
control over the development process to prevent excessive
overengineering of the project deliverables or to revise the
requirements specification and rebaseline the project.

Earning Points
Using earned cost lets you control your project with re-

spect to schedule and cost. Using earned value lets you
control your project with respect to the product you're de-
livering. Both have a place, and both are valuable contribu-
tors to project control.

Using function points lets you control value through a
stable, well-understood measure. Instead of just approxi-
mating value with cost, earned value gives you a way to
manage expectations and feature creep with real data.

References
[Fleming 1983] Quentin W. Fleming. Put Earned Value

(C/SCSC) Into Your Management Control
System. Humphreys & Associates, 1300
Quail St., Newport Beach, CA, 92660, 714-
955-2981.

[Garmus 1996] David Garmus and David Herron. Measur-
ing the Software Process: A Practical
Guide to Functional Measurements. Your-
don Press, 1996.

Earning Function Points in Software Projects November 28, 1998

 1999 Robert J. Muller, all rights reserved Page 6

[IFPUG 1994] International Function Point Users Group.
Counting Practices Manual, Release 4.0.
IFPUG, Blendonview Office Park, 5008-28
Pine Creek Drive, Westerville, OH 43081,
614-895-7130, (www.ifpug.org).

[Kertzner 1995] Harold Kerzner. Project Management: A
Systems Approach to Planning, Schedul-
ing, and Controlling. Fifth Edition. Van
Nostrand Reinhold, 1995. Pp. 813-829.

[Muller 1998] Robert J. Muller. Productive Objects: An
Applied Software Project Management
Framework. Morgan Kaufmann, 1998.

[PMI 1996] Project Management Institute. A Guide to
the Project Management Body of Knowl-
edge. Project Management Institute, 4
Campus Blvd., Newtown Square, PA, 19073
(www.pmi.org).

[Weinberg 1992]
Gerald M. Weinberg. Quality Software
Management Volume 1: Systems Thinking.
Dorset House, 1992.

Robert J. Muller
Robert J. Muller is Chief Information Officer of ValueStar, Inc. His extensive project
management experience ranges from client/server to object-oriented technologies. He is
the author of the Morgan Kaufmann book Productive Objects, the forthcoming Database
Design for Smarties, and the Oracle Press Developer/2000 Handbook. He is a member of
IEEE, ACM, and the International Function Point Users Group.

	Paper
	Bio

