
Amir Tomer
Amir Tomer is the Director of Systems and Software Engineering Processes at RAFAEL
Ltd., Israel ,with whom he has been since 1982 ,holding a variety of systems and
software engineering positions ,both technical and managerial. His B.Sc. and M.Sc.
degrees in computer science are from the Technion, Israel, and his Ph.D. in computing
from Imperial College, London, UK. Amir also teaches software engineering at the
Technion and other colleges and is active in research and publication in software and
systems engineering.



Iterative Software Development – from Theory to Practice
Amir Tomer, Boaz Shani, Ely Bonne – RAFAEL, Israel
P.O.Box 2250/1P, Haifa, Israel, tomera@rafael.co.il

Abstract

Iterative or incremental software development appears to be a promising software
process approach, and it looks great in theory. However, it’s anything but simple when it
comes time to apply it to real projects. Iterative development is even more difficult to
implement when your staff is familiar — and comfortable — with the waterfall method.
This paper describes how iterative software development process has been adopted in
RAFAEL, based on the Unified Software Development Process (USDP) introduced by
Rational Inc. The paper identifies the core differences between iterative and waterfall
software development, addresses the possible difficulties in applying the iterative
process and details the elements of an iterative software development process tailored to
RAFAEL, in view of its activities, work products, reviews and other terminology
adaptations.

1 Introduction

RAFAEL is a research and development institute producing sophisticated military
systems, including missiles, EW systems, communication systems, simulators,
intelligence systems and other systems. Most of RAFAEL’s products are software-
intensive and therefore software development has always been in focus. During the last
two decades the standard software life cycle was a “waterfall” style, based on the
military standards DOD-STD-2167A and MIL-STD-498. Recently, together with the
adoption of the Object-Oriented paradigm, the advantages of iterative development has
been recognized as a means of early mitigation of development risks and minimization
of rework effort. The Unified Software Development Process (USDP), introduced by
Rational Inc. has been examined and found appropriate to be adopted as a standard
software development process in RAFAEL, subject to necessary adaptations and
tailoring.

In this paper we describe how the USDP has been interpreted, tailored and
adapted in RAFAEL. A major principle in this adaptation was the mapping of the new
process into the existing one, to the widest extent possible.

Since software is now taking larger parts in sophisticated military systems, many
elements of software engineering are largely applicable to other engineering disciplines,
mainly to systems engineering. The software development process described here starts,
in fact, at the early stages of the system and covers the entire system lifecycle. Therefore,
the context of “software development” should be interpreted as “development of a
software intensive system”.



2 Software Development “Waterfall” Style

The waterfall model for software development was initially proposed by Royce [1] and
has been adopted and implemented widely in the software industry. The model is based
on a set of activities (requirements, analysis, design, code etc.) applied sequentially
along the development life cycle. Each development stage is accomplished by
verification of its work products, before proceeding to the next phase. When defects are
revealed through verification, they are fed back to previous stages in order to be
corrected.

The waterfall model underlies the military standard DOD-STD-2167A [2] which
was widely used since 1988. In 1994 it was replaced by another military standard, MIL-
STD-498 [3], which is still used widely for software development, both in the defense
and in the civilian industry.

The military standards contain detailed templates of the work products (named
DIDs – Data Item Descriptions) to accompany software development. Many of these
DIDs, together with their names and acronyms, have penetrated as standard vocabulary
to software engineering.

The main flaw of the waterfall model is its strict policy of accomplishing a certain
phase before proceeding to the next one. For example, programmers should not start
coding before full completion and approval of the design documents, based on
previously approved requirements documents, system design documents, system
specification documents and others. The direct impact is that no tangible visibility into
the system is provided until late stages of the life cycle. In other words, clients,
developers and other stakeholders are expected to understand and approve the entire
system on the grounds of written documentation. The consequences are, in many cases,
that major defects are revealed only after pieces of code has been programmed,
integrated and tested – long after the analysis and design has been approved. Besides
causing lengthy modification cycles, risk mitigation is postponed to very late stages.

3 The Unified Software Development Process

The Unified Software Development Process (USDP) [4] is a detailed scheme for
iterative and incremental software development. The USDP has been developed at
Rational Inc. on the basis of Ivar Jacobson’s Objectory [5] and many other sources.
Therefore it is commonly referred to as RUP (Rational Unified Process) or simply as UP.
The major difference between the USDP approach and the waterfall approach is that the
phases of the waterfall process (such as requirements, analysis, design, code etc.) may be
applied iteratively throughout development, and therefore are defined in USDP as
“workflows” rather than “phases”. In turn, the entire product life cycle is divided, along
the time axis, into four phases, as follows:

• The inception phase, through which the concept, the scope and the vision of the
product is being formed, up to a stage which enables it to be engineered;



• The elaboration phase, through which the resources, activities and work products
are defined and planned, together with the product life-cycle architecture;

• The construction phase, through which the product is implemented incrementally;
• And the transition phase, through which versions of the product are delivered to

the client and deployed for operational use.

Each of these phases is sub-divided into iterations. In each iteration all the
workflows may be applied, to the extent according to the current level of development.
Each iteration is expected to produce an operational version of the system (also referred
to as “a build”). The USDP scheme is depicted in Figure 3.1, taken from [6].

Figure 3.1: The Unified Software Development Process

The USDP has recently been proposed, by Rational Inc. and other companies, to
the OMG, to be adopted as an industrial ad hoc standard, for software and systems
development.

Although being a general process, the USDP fits best the Object-Oriented
paradigm for software analysis, design and programming. Moreover, it is best applied
when the underlying engineering activities utilize the UML (Unified Modeling
Language) [7], which was also developed at Rational but has been adopted as an
industrial standard by OMG [8].

Business
Modeling
Business
Modeling

RequirementsRequirements

Analysis
and Design

Analysis
and Design

TestTest

ImplementationImplementation

DeploymentDeployment

Config. & Change
Management

Config. & Change
Management

Project
Management

Project
Management

EnvironmentEnvironment

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

PhasesPhases

preliminary
iteration

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

iter.
#m+1

Organization along Time

preliminary
iteration

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

iter.
#m+1

Organization along Time

O
rg

an
iz

at
io

n
 a

lo
n

g
 C

o
n

te
n

t

Core WorkflowsCore Workflows

P
ro

ce
ss

P
ro

ce
ss

S
u

p
p

o
rt

in
g

S
u

p
p

o
rt

in
g



4 From MIL-STD-498 to USDP

The MIL-STD-498, and its predecessor DOD-STD-2167A, has been used in RAFAEL
as the standard life cycle models for the last two decades. RAFAEL software
development procedures are written “in the spirit” of those standards, directing software
developers to perform their activities and produce their products according to these
standards. The DID templates have been recommended as standard documentation
forms, and some of them have been translated into Hebrew. In recent years the Object-
Oriented paradigm has been widely adopted by software developers, many of whom
have started to use UML as their analysis and design language, utilizing appropriate
CASE tools. Along with this trend, the benefits of iterative development became clearer
to many engineers, managers and clients, and the USDP was examined for its
applicability.

In this section we describe how the USDP has been interpreted and adapted to the
software development process already in place. Most of the adaptation work has been
done by teams of skilled and experienced software engineers, whose task was not only to
interpret and explain the terms in a vocabulary most people are familiar with, but also to
tailor commonly used templates for hosting the new process scheme.

4.1 Life-Cycle Phases

The USDP phases, as described above, form the basis of the development life cycle for
software intensive systems. They are interpreted as follows:

• During the inception phase the scope and concept of the system is well defined, and
solution alternatives are proposed and examined through feasibility tests;

• During the elaboration phase a stable operational system architecture is built and
tested and the major risks are mitigated;

• During the construction phase the product is implemented in iterations, each of
which produces an operational version of the system, which may, or may not, be
delivered to the client;

• During the transition phase the system is installed at the client’s site, together with
appropriate instruction, support and maintenance.

According to the USDP principles, multiple activities are performed at each phase,
as described in the following section.

4.2 Stages, Activities and Work Products

Any development process comprises a set of staged activities. The differences between
various development processes and life cycles lies in the order and frequency in which
each one of these activities is applied throughout development.

Stages are defined on two levels: system level and CSCI level. System level
stages are applied first, in order to define the system general requirements, design and
architecture and system breakdown to Computer Software Configuration Items (CSCIs)
and HardWare Configuration Items (HWCIs). Then, stages are applied at CSCI level to



each CSCI. Upon completion of CSCI development, additional system level stages are
applied, in order to accomplish the system towards delivery.

Table 4.1 below summarizes the development stages at both levels. Detailed
descriptions are provided in the following two subsections.

Table 4.1: System development stages and work products

Level No. Stage Work Products Ph-
ase

1 System boundary definition • System Charter / Vision Document
2 System Requirements • SSS

• System requirements base
• Use Case model (optional, recommended)

3 System Design • SSDD
• ICD (external and internal)

System
level

4 Software Planning and Risk Analysis • SDP
• STP

Inception

5 Software Requirements • SRS
• Software requirements base
• Use Case model

6 Software Analysis and Design • SAD
• CASE based design model
• STD

7 Coding and Unit Testing • Successfully tested code

CSCI
level

8 CSCI approval • Approved CSCI
System
level

9 System Integration and Testing • An approved build of the system, ready for
delivery

E
laboration / C

onstruction

4.2.1 System Level Stages

The following stages are applied at system level, as shown in Table 4.1 above. Stages 1
through 4 comprise the inception phase and are performed exactly once. Stage 9 is
performed at each iteration, throughout the elaboration and construction phases, in
sequence to stages 5 through 8 at the CSCI level.

Stage No. 1: System Boundary Definition. The purpose of this stage is to provide a
common ground and understanding about the system for the client, the developers and
any other stakeholders. The product of this stage is a brief, but exhaustive, document
named System Charter or Vision Document. It is a complete document (that is, it is
written and approved once, and not iteratively), which contains system purpose and
goals, its relationships with external systems and its primary requirements. Although this
document is optional, it is strongly recommended, based on feedback from clients,
project managers and system engineers who reported this basic document to be a clear
and well-defined focus on the purposes of the system and its main requirements.
However, the best benefit of the system charter is gained by its authors – system
engineers and software team leaders – since it leads them to concentrate on the main
features and document them in writing. In many cases it is more important to define
what is excluded from the system, rather than what is included in it. Once this is



performed properly, development planning is easier and the entire course of
development is clearer.

Stage No. 2: System Requirements. The purpose of this stage is to define in detail the
system requirements, at the current level of knowledge. Two products are produced at
this stage: SSS document and the systems requirement base. The SSS (System /
Subsystem Specification) contains external interfaces and functional and other
requirements. Although not mandatory, it is strongly recommended to specify the
functional requirements in the form of Use Cases [7,8], which will be the form in which
each CSCI’s software requirements will be defined. The SSS document is expected to be
complete, although a few “isolated” topics may be left incomplete for further
elaboration. The SSS document is written in MIL-STD-498 based format, using UML
annotations and diagrams. The system requirements base is a database containing the
system requirements in an enumerable and well defined form, together with other
attributes, defined by the system engineer in charge. The system requirements base is
subject to change management throughout development, and therefore it is strongly
recommended to be implemented in a computerized tool. For small projects, a simple
tool, such as an electronic spreadsheet, may be sufficient.

Stage No. 3: System Design. The purpose of this stage is to provide a stable proposed
solution for implementing the system, including its architecture and its breakdown to
software and hardware configuration items (CSCIs and HWCI, respectively). The main
product of this stage is an SSDD (System / Subsystem Design Description) document
(MIL-STD-498 format), containing alternatives for system solutions, the selected system
architecture, CSCI/HWCI breakdown and the allocation of system requirements to the
configuration items. The interfaces (both external and internal) should be defined as part
of the SSDD document, or as separate ICD (Interface Control Definition) documents.

Stage No. 4: Software Planning. Based on the system requirements and design a
Software Development Plan (SDP) is produced, prior to commencing software
development. The SDP document contains the details of software development stages for
all the CSCIs in the form of an iteration plan. The overall iteration plan is constructed
such that each iteration is expected to mitigate at least one major risk, based on the table
of risks included in the SDP. A detailed plan of the first iteration is included in the SDP.
Although the overall iteration plan is complete, the SDP, as a whole, is expected to be
modified throughout the project, by adding a detailed iteration plan before the
development of each individual iteration commences (see below). In addition, the
general Software Test Plan (STP) is defined at this stage, either as a separate document
(MIL-STD-498 format) or as part of the SDP. In order to adapt the SDP for iterative
development a special SDP template has been designed on top of the basic MIL-STD-
498 format.

Stage No. 9: System Integration and Test. This stage is performed at each iteration,
after the CSCI level stages (No. 5-8) has been performed for each CSCI (see next
section). Since a basic concept of the iterative software development is the delivery of an
executable version of the system (a “build”), the purpose of this stage is to integrate the
approved versions of the CSCIs (see below) into a complete system and validate it,



according to system test specifications, up to the current iteration. It is emphasized, that
the resulted build is an extension of the previous one, and must comply to all the
previous requirements, unless changed by request. This means that the tests performed
on each built contains a significant amount of regression testing.

4.2.2 CSCI Level Stages

The following stages (5 through 8) are performed separately for each CSCI, on the basis
of the system documents and other products produced in the system level stages (1
through 4) above. The products of these stages are produced iteratively, that is, at each
iteration additional details, associated with the iteration in view, are added to those
produced in previous iterations. Stage No. 5 of each iteration is preceded by a detailed
iteration plan (an appendix to the SDP), which defines clearly which of the CSCIs
participate in the current iteration and the selection of its allocated systems requirements
which will be implemented in this iteration.

Stage No. 5: Software Requirements. At this stage the software requirements for the
current iteration are defined and specified in detail, on top of the software requirements
from previous iterations. If changes to requirements have been received, as conclusion of
operating the previously delivered iteration, they are incorporated into the definition of
the requirements of the current iteration. The main product of this stage is the SRS
(Software Requirements Specification) document, containing functional and other
requirements. The software requirements base is generated (in the first iteration) or
extended (in following iterations) by extracting requirements from the SRS. The
software requirements base is derived from the systems requirements base, and is
recommended to be implemented on a computerized tool (such as RequisitePro or
Doors). However, the best practice is to manage both system and software requirements
in a common tool, if applicable. This avoids unnecessary duplications and keeps better
integrity of the entire requirements database. An additional product of the requirements
phase is the Use Case model, constructed using a CASE tool, capturing the functional
software requirements of the CSCI. In order to incorporate the Use Cases into the SRS, a
special template has been designed, on top of the basic MIL-STD-498 format. The SRS
contains traceability of all its requirements, up to and including the current iteration.

Stage No. 6: Software Analysis and Design. At this stage the requirements of the CSCI
are analyzed in order to generate/update the software design for the CSCI. The software
architecture acts as the top level design of the software, interpreted in various views
(usuall the “4+1” viewes defined in [6]), including the identification of those
requirements affecting explicitly the software architecture. Various design models may
be used for the software design, such as Class Diagrams, Sequence Diagrams, Activity
Diagrams and Statechart Diagrams [7,8]. The main document produced at this stage is
the SAD (Software Architecture Description) document, which is arranged according to
a special template combining both the SDD (Software Design Description) format of
MIL-STD-498 and concepts taken from [4] and [9]. The SAD document captures the top
level (architectural) design, whereas the details of the design reside in the models
themselves, which undergo further refinement. It is emphasized that documents are not
written independently, but are rather extracted, as snapshots, from the models. In



addition, the detailed tests of the CSCI, at the current iteration level, are designed, in a
STD (Software Test Description) document.

Stage No. 7: Coding and Unit Testing. At this stage the software modules are coded
and tested according to the design. According to RAFAEL’s software development
procedures unit testing is performed at the discretion of the programmer and is
documented informally. It is the responsibility of the software team leader to approve the
code module and its test coverage prior to inserting it into the configuration management
library. The approved code modules are the products of this stage.

Stage No. 8: CSCI Validation and Approval. Each CSCI is validated and approved
upon successful completion of the tests specified in the STD (Software Test
Description). These tests are usually performed in an environment containing a
simulator, in which test scenarios are defined and test results are recorded and analyzed.
For large CSCIs partial integration and testing may be performed in several steps. The
product of this stage is a validated and approved CSCI, ready for system integration.
When all the required CSCIs are ready, stage 9 (see above) is performed at the system
level.

4.3 Reviews

Reviews are the means by which work products are verified. Proceeding from one
development stage to the following is dependent upon successful accomplishment of the
corresponding review. Reviews are categorized into two types: external reviews and peer
reviews, as described in the following. Reviews are planned in advance for the entire
project, and the review plan is documented in the SDP. Reviews are performed
according to RAFAEL procedure for software reviews.

4.3.1 External Reviews

External reviews are performed for the clients and with their participation, according to
the contract. Their main purpose is to enable the client to get an insight into the system
and its design at significant milestones during development. Recommended external
reviews are enlisted in Table 4.2.

Table 4.2: Recommended external reviews

External Review When? Reviewed work products Comments
SRR (System
Requirements
Review)

End of Stage 2 • SSS

SDR (System Design
Review)

End of Stage 4 of the
Inception Phase

• SSDD
• SDP

SSR (Software
Specification Review)

End of Stage 5 of
selected/significant
iterations

• SRS of relevant CSCIs



CDR (Critical Design
Review – for the
software)

End of Stage 9 of the
Elaboration phase

• SAD
• An operative system

At this stage an operative
skeletal system, with stable
architecture, is expected,
with all its architecture
components tested for their
appropriate function.

TRR (Test Readiness
Review)

End of Stage 8 of
client deliverable
iteration

• STR (Software Test
Reports)

Approving the readiness of
each CSCI for system
integration and testing.

4.3.2 Peer Reviews

There are four peer reviews associated with each iteration. Their main role is to
objectively review the work products, in order to alert the developers for any defects
anticipated in the products according to design errors, deficiencies or misinterpretation
of requirements. Peer reviews are internal, that is, without the presence of the client. Peer
review teams often include, besides software engineers, system engineers and engineers
of other relevant disciplines. Recommended peer reviews are enlisted in Table 4.3. Note
that reviews may be unified, as applicable.

Table 4.3: Recommended peer reviews

Peer Review Timing Reviewed work products Comments
Iteration plan review Before Stage 5 of

each iteration
• SDP appendix

containing the detailed
plan of the current
iteration

Emphasis on the goals and
risk mitigation of the
current iteration

SSR (Software
Specification Review)

End of Stage 5 of
each iteration

• SRS of relevant CSCIs

SDR (Software
Design Review)

End of Stage 6 of
each iteration

• The appropriate design
models

• STD of relevant CSCIs
Iteration completion
review

End of Stage 9 of
each iteration

• Demonstration of the
system developed so
far

• Updated risk status

The results of this review is
the input for the next
iteration plan

4.4 An Example of Iterative Software Development

Table 4.4 describes an example of the entire product development life cycle of a system
containing 3 CSCIs. Life cycle contains two elaboration iterations and two constuction
iterations. Note that not necessarily all mentioned CSCI participate in each system
iteration. Furthermore, CSCI level reviews not necessarily align, and may be performed
separately or unified, as applicable.

Table 4.4: Iterative Software Development

1. System Boundary
2. System Requirements

SRR – System Requirements Review
3. System Design

4. Software Planning

Inception

SDR – System Design Review



CSCI A CSCI B CSCI C

Detailed Iteration Planning
Iteration Plan Review

5. Software Requirements 5. Software Requirements 5. Software Requirements
SSR – Software Specification Review(s)

6. Software Design 6. Software Design 6. Software Design
SDR – Software Design Review(s)

7. Coding and Unit Testing 7. Coding and Unit Testing 7. Coding and Unit Testing
8. CSCI Validation 8. CSCI Validation 8. CSCI Validation

Iteration 1

Iteration Completion Review
Detailed Iteration Planning

Iteration Plan Review
5. Software Requirements 5. Software Requirements 5. Software Requirements

SSR – Software Specification Review(s)
6. Software Design 6. Software Design 6. Software Design

SDR – Software Design Review(s)
7. Coding and Unit Testing 7. Coding and Unit Testing 7. Coding and Unit Testing

8. CSCI Validation 8. CSCI Validation 8. CSCI Validation

E
laboration

Iteration 2

Iteration Completion Review
Detailed Iteration Planning

Iteration Plan Review
5. Software Requirements 5. Software Requirements 5. Software Requirements

SSR – Software Specification Review(s)
6. Software Design 6. Software Design 6. Software Design

SDR – Software Design Review(s)
7. Coding and Unit Testing 7. Coding and Unit Testing 7. Coding and Unit Testing

8. CSCI Validation 8. CSCI Validation 8. CSCI Validation

Iteration 3

Iteration Completion Review
Detailed Iteration Planning

Iteration Plan Review
5. Software Requirements 5. Software Requirements 5. Software Requirements

SSR – Software Specification Review(s)
6. Software Design 6. Software Design 6. Software Design

SDR – Software Design Review(s)
7. Coding and Unit Testing 7. Coding and Unit Testing 7. Coding and Unit Testing

8. CSCI Validation 8. CSCI Validation 8. CSCI Validation
C

onstruction

Iteration 4

Iteration Completion Review

5 Conclusions

During the last couple of years the iterative software development process has been
applied to a small number of pilot projects. The experience gained through these projects
has been analyzed and recorded into a formal process documentation, which is currently
in the process of discussion and formal approval.

The results reported so far show significant satisfaction of engineers, managers
and clients, who feel more confidence in the product, which is obtained by having
operational demonstration of parts of the system in early stages of the project. The early
mitigation of major risks play a major role in the adoption of the iterative development
process to an increasing number of projects.



6 Bibliography

[1] W. W. Royce, Managing the development of large software systems: Concepts and
techniques, 1970 WESCON Technical Paper, Western Electronic Show and
Convention, Los Angeles, 1970, pp. A/1-1–A/1-9, reprinted in: Proceedings of the
11th International Conference on Software Engineering, Pittsburgh, May 1989, pp.
328–38.

[2] DOD-STD-2167A, Military Standard, Defense System Software Development,
February 1988.

[3] MIL-STD-498, Military Standard, Software Development and Documentation,
December 1994.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process, Addison Wesley, Reading, MA, 1999

[5] I. Jacobson, M. Ericsson and A. Jacobson, The Object Advantage: Business Process
Reengineering with Object Technology, Addison-Wesley, Reading, MA, 1995.

[6] P. Kruchten, The Rational Unified Process – an Introduction, Addison-Wesley,
Reading, MA, 1998.

[7] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual, Addison Wesley, Reading, MA, 1999.

[8] OMG Unified Modeling Language Specification, Version 1.4, September, 2001.

[9] IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems, IEEE Std 1471-2000, IEEE Computer Society, September 2000.


	BIO
	PAPER



