
Mutating Automated Tests STAR East 2000 Page 1 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 1

Mutating Automated Tests

Copyright © 2000, Software Quality Methods, LLC. No part of these graphic overhead slides may
be reproduced, or used in any form by any electronic or mechanical duplication, or stored in a

computer system, without written permission of the author.

Douglas Hoffman
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org

STAR East ´00

Mutating Automated Tests
STAR East 2000

Douglas Hoffman
Copyright © Software Quality Methods, LLC., 2000.

All rights reserved.

Keywords: Automated Testing, Mutating Tests, Non-deterministic Tests, Pseudo Random
Numbers, Test Oracles

Key points attendees take away:

• Benefits and shortcomings of automated tests
• Design approaches for creating more powerful automated tests
• How organizations can evolve to support these more powerful tests
• Types of automated tests that are easy or hard to vary
• Some methods to improve the value of some automated tests
• Examples of non-deterministic automated tests

Summary

Most automated tests are used as regression tests – doing the same exercises each time the test is
run. This paper and talk describe a powerful type of automated test – one that does something
different each time it runs. These tests can augment traditional manual and automated regression
tests to expose unexpected software under test (SUT) behaviors. The paper goes into the
organizational issues and typical organizational evolution that are precursors for these tests and
presents the idea of mutating tests. The approach doesn’t apply to all situations of automated
tests, but the author presents some pros and cons for mutating automated tests and provides
several examples based on experience.

Background

One of the limitations of most automated
tests is that they are generally less likely to
uncover latent defects than equivalent
manual tests. This stems from two factors: a
test is most likely to find a software defect
the first time it is run and a person running
a test is able to perceive unexpected
behaviors for which an automated
verification doesn’t check. The first factor
occurs because software doesn’t wear out,
so a program should do the same thing each
time it is given the same inputs, especially
when the inputs are provided by an
automaton.

Mutating Automated Tests STAR East 2000 Page 2 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 2

Automated Software Tests

• No intervention needed after launching tests
• Automatically sets-up and/or records relevant

test environment
• Runs test exercise
• Captures relevant results
• Evaluates actual against expected results
• Reports analysis of pass/fail

The first factor is amplified because a person provides the input and evaluates results for manual
tests, while automated tests use programs to do the work. A person will not do exactly the same
thing the same way even when they try, while an automaton will tend to do exactly the same
thing every time. A person running manual tests can easily vary the test exercise and evaluate the
responses of the SUT. One has almost no expectation of finding a defect with the typical
automated test unless a new defect has been put in since its last running. Manually rerunning
tests introduces new variations and exercises, improving the likelihood of finding new problems
even with an old test.

The second factor is usually a powerful plus for manual tests; a person may notice a flicker on
the screen, an overly long pause before a program continues, a change in the pattern of clicks in a
disk drive, or any of dozens of other clues that an automated results check would miss. The
author has seen automated tests “pass” and then crash the system, device, or SUT immediately
afterwards. Although not every person might notice these things and any one person might miss
them sometimes, an automated test only verifies those things it was originally programmed to
check. If an automated test isn’t written to check timing, it can never report a time delay.

Automated tests typically come from manual exercises, so the first time an automated test is run
is not the first time SUT performs the test exercise. Even when an automated test is built and run
without having been first run manually, the first automated run is more likely to find defects than
subsequent runs. Because of the automation, the exercise very closely repeats itself every time.

This is not to say that automated tests aren’t useful or powerful. An automated test regains some
power to find problems when the software changes. Manually rerunning the same tests each time
anything changes is time consuming and boring for people and, so far, the machines haven’t
complained about doing it. People are also easily trained about what to expect from a test and
can cognitively miss seeing errors after only a few repetitions. Thus, the first place usually
considered of for automation is regression testing.

The term “automated software tests” has
many different meanings, depending upon
the speaker and context. For the purposes
of this paper, an automated software test is
a test with the six characteristics shown in
Slide 2. The test consists of performing
some exercise of the SUT, observing
some results, comparing them with
expected result values, and reporting the
outcome.

Mutating Automated Tests STAR East 2000 Page 3 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 3

Levels of Automation

• Fully automated software testing

• Semi-automated software testing

• Manual software testing

Douglas Hoffman Copyright © 2000, SQM, LLC. 9

Testing With An Oracle
Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Test Oracle

System Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Postcondition Data

Postcondition
Program State

Environmental
Results

Software testing is difficult and automated software testing is much more difficult. In both cases
one must choose or develop good test exercises for the SUT. The tester is an extremely powerful
and flexible computational engine for manual testing. In an automated test the exercise is built
into the automaton, including predicting
and comparing the results. This leads to a
situation in software regression testing that
James Bach describes as “playing twenty
questions with all the questions written
down in advance.” Some of the biggest
difficulties in software test automation are
in knowing what results are expected from
the SUT. Slide 9 illustrates the scope of
actual inputs and results in a software test.
There are many issues with the huge
number of potentially relevant results and
how to record them. Often, it is extremely
difficult to predict what the SUT should do
and what outcomes are expected. Although the test designer typically is only conscious of the
values directly given to the SUT, the SUT behavior is influenced by its data, program state, and
the configuration of the system environment it runs in.

In order to check the results, all inputs to the SUT must be tracked and some means of generating
a prediction of the resultant behaviors provided for some or all of the same dimensions. In a
manual test, the tester usually controls or checks preconditions and inputs, or can quickly adjust
the system when they encounter unexpected results. An automated test must rely upon the test
design and system setup to control the important inputs. It must also include some mechanism
for knowing or getting the expected results (typically from an oracle). Regardless of the exercise
of the SUT in a test, an automated test will be poor with poorly selected relevant inputs or
results, with poor results oracles, or if there is limited visibility into the relevant values.

There is a broad spectrum of levels of
software test automation. At one extreme,
there may be no automation involved. A
person will perform the test exercise,
observe the results, determine what should
have happened, and draw the conclusions
about the SUT. At the other extreme there
are tests that run and self verify
completely automatically (assuming no
anomalies are detected in the SUT). In
between, a manual tester can get many
automated assists. The optimum level of
test automation is dependent on the
specific situation.

Mutating Automated Tests STAR East 2000 Page 4 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 4

Advantages To Automation

• Repeatable
• Faster running

• Reusable components

• Standardized formats

• Easy to generalize

• Better environment control

Douglas Hoffman Copyright © 2000, SQM, LLC. 5

Disadvantages To Automation

• Requires test tools
– Expensive
– Confine the paradigm

• Time consuming test creation
• Does the same thing each time
• Limit possible observations
• Tests and tools require real maintenance

Advantages and Drawbacks of Automation1

In spite of the difficulties involved with
creating good automated tests, there are
clear advantages in many circumstances.
Slides 4 and 5 list many of the initial
advantages and disadvantages gained
from automating existing tests. Additional
advantages and challenges from more
advanced automation approaches (second
generation automated tests and beyond)
are discussed below.

Most of the initial advantages from test
automation are derived from the
standardization and discipline required for
automation. Automating software testing
requires a more formal engineering approach than manual testing. This is a double edged sword,
potentially improving the efficiency and effectiveness but requiring different (and usually more
technical) job skills.

Some of the disadvantages stem from
financial and time consumption costs,
while others are related to the cultural
changes an organization undergoes. The
financial costs involved include direct
costs for acquiring or creating and then
maintaining the automation mechanisms
and longer times for test design and
implementation. The cultural changes
occur due to the changes in the roles for
test designers and testers, and the new
testing paradigms.

The initial costs and benefits are generally something organizations incur in the course of
introducing test automation. In the author’s experience, most organizations go through several
stages in creating their automated test suites. It helps when explaining the concepts to view more
powerful testing as an evolution, although it is not necessary to go through such a progression.

Generations of Automation

The initial decision to automate testing usually revolves around either integration/build tests or
regression testing. In the former case the automated tests have the special purpose of providing a
quick check of an automated software build process. These tests are usually not very useful as a

1 For a more complete treatment of the issues, see Cem Kaner’s paper from Quality Week 1997, “Improving the
Maintainability of Automated Test Suites.”

Mutating Automated Tests STAR East 2000 Page 5 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 6

First Generation Automation

• Automate existing tests by creating
equivalent exercises

• Small improvements

• Test scripting

• Reuse test components

• Hard coded oracles

Douglas Hoffman Copyright © 2000, SQM, LLC. 7

The Power Of Tests

• Self verifying tests
– Check results ASAP in the test
– Dump data only on errors

• More general exercises
– All alternatives in turn
– “Walk the tree” approach

• Include positive and negative cases

foundation for more general automated tests, although they may provide an excellent example of
a simple automation architecture. Automated regression tests are more likely to provide the
foundation for more advanced automation. Regardless, the initial tests are usually automated
versions of manual test exercises.

The author views this initial automation as
the first generation. Slide 6 describes
some of the characteristics of this level of
software test automation. This is where
the main investments in the infrastructure
to support test automation take place.
Unfortunately, many organizations fail to
manage a coherent strategy at this level
and invest heavily to make a marginal
architecture work or they abandon
automation altogether.

Although there is nothing wrong with first
generation automated tests, the organization has to gain enough experience to get past the view
that automated tests are like manual tests in order to evolve beyond this level of automation.
Slide 7 shows some of the ways that these automated tests can be improved.

When a tester manually runs a test, the
tester makes continuous observations
about correct SUT behaviors. Even when
result comparisons are done after a test is
run, the tester can see immediately when
the behavior of the SUT deviates radically
from expected. For automated tests, this is
only true in if explicit mechanisms to
check behaviors are designed in, and even
then, the checking is limited to those
factors actually checked.

An automated test can often be expanded
beyond what a manual test can do by
generalizing the exercise. Where a person finds trying all of the combinations of configuration
values to be tedious and slow, an automated test can walk through the combinations at machine
speeds. Likewise, trying all the fields on a screen or all the screen transitions may be
straightforward for an automated test, but difficult or impossible for a human tester.

Handling negative test cases is much more difficult for automated tests because the SUT may
react in unusual or unspecified ways when given invalid or conflicting inputs. Where a human
tester can fairly easily analyze the acceptability of the response and formulate a recovery
strategy, these things are very difficult to build into automated tests.

Mutating Automated Tests STAR East 2000 Page 6 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 8

Second Generation
Automation

• Automated oracles

• Exhaustive/extensive/intensive exercises

• Auto generated tests and data

• More powerful exercises

• Random selections among alternatives

Douglas Hoffman Copyright © 2000, SQM, LLC. 10

More Powerful Exercises

• Increase the number of combinations

• Self-verifying tests and diagnostics

• More frequency, intensity, duration

• Increase the variety in exercises

Second generation automation continues beyond these improvements with exercises that are
even more powerful and analysis. More emphasis can be placed on generation of expected
results by both modeling the SUT behavior and extending the characteristics and values being
checked. Tests can cover more situations by using better oracles to check SUT behavior.

Once the framework is established, the
first generation tests can be extended as
illustrated in Slide 8. The test exercises
can be expanded to more exhaustively
cover input variation, broaden the scope
of coverage, and increase the intensity of
activities using facilities like looping and
parallel threads. Different aspects of the
SUT can be emphasized and analyzed
using specialized tools to identify test
conditions and generate test data.

The focus of this paper is on creating
more powerful exercises that, unlike most
regression tests, vary conditions each time they run. The second generation tests take advantage
of automation to increase the coverage while doing more thorough verification. Verification can
expand into intermediate results and internal program data and state information, or develop into
diagnostics that explore and isolate
errors when unexpected behaviors are
detected.

The second generation may increase the
frequency, intensity, or duration of
automated test activities to find certain
classes of errors. Speeding up the
execution or increasing the number of
parallel activities can increase the
frequency. Generating extreme values
and extreme combinations increases
intensity. Duration is increased by
running the SUT with typical inputs for
extended periods (load or life testing).

With improved verification it becomes practical to expand tests to exercise broader areas of the
SUT, while checking for deviations in the SUT behaviors. Without such verification, broad tests
tend to find unreproducible defects or ones extremely difficult to identify and isolate.

The second generation improvement of significance to the concept of mutating automated tests is
the use of pseudo random numbers to decide test behaviors. (Pseudo random in that the sequence
of values is random, but repeatable based upon a seed value. For any given test the seed can be
randomly selected and saved so the test can be repeated if need be.) This is particularly useful

Mutating Automated Tests STAR East 2000 Page 7 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 11

Random Selection Among
Alternatives

• Partial domain coverage

• Small number of combinations

• Requires an oracle for verification

• Pseudo random number generation

The beginnings of mutating tests!

Douglas Hoffman Copyright © 2000, SQM, LLC. 12

Third Generation Tests

• System instrumentation

• Multi-threaded tests

• Fall back compares

• Heuristic oracles

• Diagnostics

when the input domain is larger than practical for exhaustive testing or when only a small
number of combinations can be
exercised in a single test. By randomly
choosing values, the test improves the
possibility of encountering new
conditions in the SUT, and thus
increasing the opportunity for finding
undetected problems. These tests try to
expose unexpected SUT behaviors that a
tester might never think of.

It is important to understand the
constraints for tests using random
values. Noel Nyman’s smart monkeys2
are simple examples of such automated
tests. In their earliest formation, these
are second generation mutating tests. They require some model for input behavior, whether hard
coded or read into the test as data. More importantly, they require some mechanism for
determining whether or not the behavior of the SUT is expected. The oracle must be able to deal
with predicting SUT behaviors for any (and therefore all) inputs.

One of the most difficult constraints on these tests is designing the test recovery behavior for
when the unexpected happens. The SUT and the system don’t always behave well in the face of a
test that doesn’t. As test behavior becomes more sophisticated and more varied, the test has to
become ever more capable of handling responses. Even in those rare situations when all negative
case behaviors are specified, erroneous behaviors in the SUT do not necessarily follow specified
rules. In order for the automated test to report it’s findings it has to be able to recognize and
survive almost any response. Often the test environment itself has to be made robust enough to
recognize and report when the SUT or system aborts. The test has to handle arbitrary errors that
may crop up at any time.

Whether or not randomness is used in
second generation tests, third generation
tests can be even more powerful by
using knowledge and visibility into the
SUT and system. These tests may look
nothing like manual tests, as they take
advantage of the internal characteristics
of the SUT and system environment.

These automated tests take advantage of
standard or special hooks to control and
monitor SUT and system behaviors. A
test that programmatically checks for

2 Nyman, Noel, “Using Monkey Test Tools,” Software Testing and Quality Engineering Magazine, Vol. 2, Issue 1,
Jan/Feb 2000

Mutating Automated Tests STAR East 2000 Page 8 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 13

Tools For Third Generation

• Software instrumentation
– Observations
– Controls

• Oracles and comparators

• Test execution control

memory leaks is one example. The instrumentation may be simple, publicly available API
software calls or it could involve special hardware and software instrumentation. The important
factor for these tests is that they (and probably the test management system) are relying on the
instrumentation to monitor and/or control SUT behaviors. These tests are able to set and detect
conditions that may be impossible to do manually.

The third generation may also include multithreaded tests; ones that have interacting portions
that run simultaneously. These are often
more complex than load tests, as the
various threads monitor and adjust their
behaviors based on the behavior and
status of the SUT and other threads.
Dynamic conditioning of the SUT can be
monitored and adjusted by the tests at
machine speeds, creating dynamic test
conditions far beyond a person’s
capabilities.

Oracles for the third generation tend to
become more numerous and more
complex. The same “answer” can often
appear in many ways; printer output may
come in the form of Adobe PostScript, a bitmap, or something in between. It is easy to create
two different PostScript files that will render the same image, so simply finding a miscompare
between the expected and generated PostScript files does not mean there is an error. The test
designer must construct a second, fallback comparison using some other oracle. For example, the
test could generate the bitmaps and automatically compare them. (One group designed and built
an automation architecture that included five levels of fallback comparisons before resorting to
calling for human assistance.) The obvious solution of printing the two files has the drawback of
requiring a person to interpret the results, making it a semi-automated test.

Another frequent characteristic of third generation automation is the use of fuzzy comparisons,
approximations, or heuristic oracles. It is often difficult to generate oracles for SUT behaviors,
and it becomes even more of a chore to model internal behaviors to compare with observations
from instrumented software. The heuristic techniques allow simpler oracles to screen SUT
behaviors against. By combining this with fallback comparisons, these automated tests can
quickly, automatically, and (more or less) accurately verify results.

Like fallback compares, tests in this generation may go much further than just exercising or
testing the SUT. Where an exercise may be defined as providing inputs as stimulus to the SUT,
and testing as adding verification of expected SUT behavior in response to the exercise, a
diagnostic performs specific tests in response to unexpected SUT behavior in order to further
identify the nature and scope of an error. A diagnostic test looks for errors and then performs
additional tests based on the specific type of error encountered. An example would be a data
communications test that responds to finding a message miscomparison by checking the output
and input buffers and program data to identify where in transit the data was changed. Diagnostic

Mutating Automated Tests STAR East 2000 Page 9 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 14

Mutating Automated Tests

• Closely tied to instrumentation and
oracles

• Using pseudo random numbers
– Random selection from domains
– Nesting and looping
– With and without replacement

• Positive and negative cases possible
• Drill down on error

Douglas Hoffman Copyright © 2000, SQM, LLC. 15

Mutating Tests Examples

• Data base contents

• Processor instruction sets

• Compiler language syntax

• Stacking of data objects

level testing becomes necessary when the test complexity grows and the human visibility into the
SUT behavior shrinks.

In this third generation automation there is
the possibility of combining elements to
create tests that go far beyond the
regression test paradigm. The tests that
use random selections may be called
mutating automated tests because they do
different, reasonably sophisticated
exercises of an instrumented SUT and
employ automated oracle techniques to
manage verification of actual against
expected results. They do different things
each time they run and still verify proper
SUT behaviors in the face of it.

Some of the most powerful of these tests include random selection of valid and invalid inputs,
instrumentation, fallback comparisons, and diagnostic techniques to provide substantial amounts
of data about SUT behavior. Sophisticated models of the SUT, interfaces, or data may be
generated from formal specifications or source code and used as input to configure or condition
the tests and instrumentation. By combining these elements it is possible to automatically
generate tests that explore SUT responses to weighted random inputs, with oracles based on
independent interpretation of specifications or code.

Some examples of such automated tests the author has created are listed in Slide 15 and briefly
described below. Since they were
developed for different products, in
entirely different environments, with
different risks and priorities, and at
different companies, they are not made up
of the same elements.

• A set of rules was created for building
records given a programmatically
specified database layout to test a data
base software engine. The test generates
random add/edit/delete function calls that
are performed on a test data base. Based
on the test developers’ knowledge of the
database design, test data is constructed to describe the record link and database constructor
information relative to each record and incorporated as data in fields within the records. The test
covers positive and negative inputs, as the random value generation and verification includes
both. When the test run is complete, each record in the test data base contains links and
constructor information about itself. The test runs for a specified length of time, followed by

Mutating Automated Tests STAR East 2000 Page 10 of 11

Douglas Hoffman Copyright © 2000, SQM, LLC. 16

Summary

• Automated tests can be
powerful

• Static automated tests are
unlikely to find defects

• More powerful automated
tests cannot be duplicated
manually

running a separate verification program that walks through the database records and verifies that
the actual linkages correspond to the information stored in the records.

• A second example is a test for a computer processor. The test generates random, well formed
instruction sequences to exercise the processor instructions and micro code. The instruction
sequences are constructed to avoid circumstances such as clearing the registers or halting the
machine. The test verifies the internal register values every 100 instructions. The instructions are
then fed to a simulator as the oracle and to the actual processor. (The limiting factor being the
simulator, since it is thousands of times slower than the processor itself.) Different test sets can
be constructed with emphasis on different instruction types by changing the likelihood of
generating the particular instructions.

• At another company, an automated test for a compiler uses weighted random, well formed
syntax to generate programs to exercise the language syntax and semantics. The test compares
the responses of the compiler under test with results from one of several other compilers,
including an earlier version of the compiler and commercially available compilers for the same
language. Syntax checking includes both positive and negative test cases. The semantic checks
are primarily negative cases, where the various compilers report errors in the program, and for
which fall back manual checking is often needed against commercial compiler responses.

• A fourth example tests nesting of objects in a desktop publishing system. By design, the
system objects can contain other objects (e.g., a paragraph can contain a drawing, which in turn
can have a table in it with a table within one cell and a paragraph in one cell of the inner table).
The test uses syntax rules and weighted random object selection to generate and nest arbitrary
objects within objects. A previously tested and released version of the product operates as an
oracle, with the resulting documents being compared successively in a fallback scheme (starting
from the desktop proprietary object file format, through file interchange formats and several
printer output file formats) until there is a match or exhaust the oracle generated files.

Conclusion

There are techniques to make very powerful automated tests that don’t just do the same thing
every time. When used well, they result
in better test coverage and detecting
more defects. A solid foundation for
such automated tests has to be formed
including elements like models for input
and results, results oracles, SUT
instrumentation, and test execution
controls. These tests use capabilities
only available through automation to
control and monitor SUT behavior and
therefore cannot be duplicated manually.

Mutating Automated Tests STAR East 2000 Page 11 of 11

Experience and qualifications

Douglas Hoffman, BACS, MSEE, MBA, CSQE
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org

Douglas Hoffman has over twenty-five years experience in software quality assurance and
degrees in Computer Science, Electrical Engineering, and an MBA. He has been a participant at
dozens of software quality conferences and has been Program Chairman for several international
conferences on software quality. He has architected test automation environments and automated
tests for several commercial systems and software companies, and has been an active participant
in the Los Altos Workshops on Software Testing (LAWST).

He is an independent consultant with Software Quality Methods, LLC., where he teaches

courses and consults primarily with Silicon Valley companies in strategic and tactical planning
for software development and software quality. He is active as a Senior Member in the ASQ,
participating in the Software Division, the Software Quality Task Group, and the ISO 9000 Task
Group, and is a member of the ACM and IEEE. He was past Chairman of the Santa Clara Valley
Software Quality Association (SSQA) and is currently the Chairman of the Santa Clara Valley
Section of the ASQ. He was among the first to earn a Certificate from ASQ in Software Quality
Engineering, and has been a registered ISO 9000 Lead Auditor.

